Suppr超能文献

通过微尺度定量核磁共振光谱法检测无水矿物中的微量元素。

Trace element detection in anhydrous minerals by micro-scale quantitative nuclear magnetic resonance spectroscopy.

作者信息

Fu Yunhua, Tao Renbiao, Zhang Lifei, Li Shijie, Yang Ya-Nan, Shen Dehan, Wang Zilong, Meier Thomas

机构信息

School of Earth and Space Sciences, Peking University, Beijing, China.

Center for High-Pressure Science and Technology Advance Research, Beijing, China.

出版信息

Nat Commun. 2024 Aug 24;15(1):7293. doi: 10.1038/s41467-024-51131-0.

Abstract

Nominally anhydrous minerals (NAMs) composing Earth's and planetary rocks incorporate microscopic amounts of volatiles. However, volatile distribution in NAMs and their effect on physical properties of rocks remain controversial. Thus, constraining trace volatile concentrations in NAMs is tantamount to our understanding of the evolution of rocky planets and planetesimals. Here, we present an approach of trace-element quantification using micro-scale Nuclear Magnetic Resonance (NMR) spectroscopy. This approach employs the principle of enhanced mass-sensitivity in NMR microcoils. We were able to demonstrate that this method is in excellent agreement with standard methods across their respective detection capabilities. We show that by simultaneous detection of internal reference nuclei, the quantification sensitivity can be substantially increased, leading to quantifiable trace volatile element amounts of about 50 ng/g measured in a micro-meter sized single anorthitic mineral grain, greatly enhancing detection capabilities of volatiles in geologically important systems.

摘要

构成地球和行星岩石的名义上无水矿物(NAMs)包含微量挥发物。然而,NAMs中挥发物的分布及其对岩石物理性质的影响仍存在争议。因此,限制NAMs中的痕量挥发物浓度等同于我们对岩石行星和小行星演化的理解。在此,我们提出一种使用微尺度核磁共振(NMR)光谱进行微量元素定量的方法。该方法采用了NMR微线圈中增强的质量灵敏度原理。我们能够证明,该方法在各自的检测能力范围内与标准方法高度一致。我们表明,通过同时检测内部参考核,可以大幅提高定量灵敏度,从而在一个微米大小的单斜长石矿物颗粒中测得约50 ng/g的可定量痕量挥发元素含量,极大地提高了对地质重要系统中挥发物的检测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b941/11344839/3f7c2eb69a5d/41467_2024_51131_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验