Pech-Cohuo Soledad Cecilia, Dzul-Cervantes Mario Adrián de Atocha, Pérez-Pacheco Emilio, Rosado Jorge André Canto, Chim-Chi Yasser Alejandro, Ríos-Soberanis Carlos Rolando, Cuevas-Carballo Zujey Berenice, Uc-Cayetano Erbin Guillermo, Can-Herrera Luis Alfonso, Ortíz-Fernández Alejandro, Collí-Pacheco Juan Pablo, Mina-Hernández José Herminsul, Pérez-Padilla Yamile
Universidad Politécnica de Yucatán, Tablaje Catastral 7193, Carretera, Mérida-Tetiz Km.4.5, C.P. 97357, Mérida, Yucatán, Mexico.
Tecnológico Nacional de México, Campus Instituto Tecnológico Superior de Calkiní, Cuerpo Académico Bioprocesos, Av. Ah Canul SN por Carretera Federal, C.P. 24900, Calkiní, Campeche, Mexico.
Sci Rep. 2024 Aug 24;14(1):19669. doi: 10.1038/s41598-024-69092-1.
In this study, thermoplastic starch (TPS) biofilms were developed using starch isolated from the seeds of Melicoccus bijugatus (huaya) and reinforced with bentonite clays at concentrations of 1%, 3%, and 5% by weight. Novelty of this research lies in utilizing a non-conventional starch source and enhancing properties of TPS through clay reinforcement. FTIR analysis verified bentonite's nature of clays, while SEM analysis provided insights into morphology and agglomeration behavior. Key findings include a notable increase in biofilm thickness and elastic modulus with higher clay content. Specifically, tensile strength of biofilms improved from 2.5 MPa for pure TPS to 5.0 MPa with 5% clay reinforcement. The elastic modulus increased from 25 MPa (TPS) to 60 MPa (5% clay). Thermal stability also showed enhancement, with initial degradation temperature increasing from 110 °C for pure TPS to 130 °C for TPS with 5% clay. Water vapor permeability (WVP) tests demonstrated a decrease in WVP values from 4.11 × 10 g m s Pa for pure TPS to 2.09 × 10 g m s·Pa for TPS with 5% clay, indicating a significant barrier effect due to clay dispersion. These results suggest that biofilms based on huaya starch and reinforced with bentonite clay have considerable potential for sustainable food packaging applications, offering enhanced mechanical and barrier properties.
在本研究中,热塑性淀粉(TPS)生物膜是用从人心果(华亚)种子中分离出的淀粉制成的,并以1%、3%和5%(重量)的浓度用膨润土进行增强。本研究的新颖之处在于利用了一种非常规的淀粉来源,并通过粘土增强来改善TPS的性能。傅里叶变换红外光谱(FTIR)分析验证了膨润土的粘土性质,而扫描电子显微镜(SEM)分析提供了有关形态和团聚行为的见解。主要发现包括随着粘土含量的增加,生物膜厚度和弹性模量显著增加。具体而言,生物膜的拉伸强度从纯TPS的2.5兆帕提高到5%粘土增强时的5.0兆帕。弹性模量从25兆帕(TPS)增加到60兆帕(5%粘土)。热稳定性也有所提高,初始降解温度从纯TPS的110℃提高到含5%粘土的TPS的130℃。水蒸气透过率(WVP)测试表明,WVP值从纯TPS的4.11×10克·米·秒·帕下降到含5%粘土的TPS的2.09×10克·米·秒·帕,这表明由于粘土分散产生了显著的阻隔效果。这些结果表明,基于华亚淀粉并用膨润土增强的生物膜在可持续食品包装应用方面具有相当大的潜力,具有增强的机械性能和阻隔性能。