Suppr超能文献

通过使用机器学习方法分析单细胞多组学数据,鉴定与 COVID-19 患者康复后免疫系统长期影响相关的基因和蛋白质特征。

Identification of gene and protein signatures associated with long-term effects of COVID-19 on the immune system after patient recovery by analyzing single-cell multi-omics data using a machine learning approach.

机构信息

School of Life Sciences, Shanghai University, Shanghai 200444, China.

Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.

出版信息

Vaccine. 2024 Oct 3;42(23):126253. doi: 10.1016/j.vaccine.2024.126253. Epub 2024 Aug 24.

Abstract

Viral infections significantly impact the immune system, and impact will persist until recovery. However, the influence of severe acute respiratory syndrome coronavirus 2 infection on the homeostatic immune status and secondary immune response in recovered patients remains unclear. To investigate these persistent alterations, we employed five feature-ranking algorithms (LASSO, MCFS, RF, CATBoost, and XGBoost), incremental feature selection, synthetic minority oversampling technique and two classification algorithms (decision tree and k-nearest neighbors) to analyze multi-omics data (surface proteins and transcriptome) from coronavirus disease 2019 (COVID-19) recovered patients and healthy controls post-influenza vaccination. The single-cell multi-omics dataset was divided into five subsets corresponding to five immune cell subtypes: B cells, CD4+ T cells, CD8+ T cells, Monocytes, and Natural Killer cells. Each cell was represented by 28,402 scRNA-seq (RNA) features, 3 Hash Tag Oligo (HTO) features, 138 Cellular indexing of transcriptomes and epitopes by sequencing (CITE) features and 23,569 Single Cell Transform (SCT) features. Some multi-omics markers were identified and effective classifiers were constructed. Our findings indicate a distinct immune status in COVID-19 recovered patients, characterized by low expression of ribosomal protein (RPS26) and high expression of immune cell surface proteins (CD33, CD48). Notably, TMEM176B, a membrane protein, was highly expressed in monocytes of COVID-19 convalescent patients. These observations aid in discerning molecular differences among immune cell subtypes and contribute to understanding the prolonged effects of COVID-19 on the immune system, which is valuable for treating infectious diseases like COVID-19.

摘要

病毒感染会显著影响免疫系统,并且这种影响会持续到康复。然而,严重急性呼吸综合征冠状病毒 2 感染对已康复患者的免疫稳态和二次免疫反应的影响尚不清楚。为了研究这些持续的变化,我们采用了五种特征排序算法(LASSO、MCFS、RF、CATBoost 和 XGBoost)、增量特征选择、合成少数过采样技术以及两种分类算法(决策树和 K 最近邻),对来自新型冠状病毒肺炎(COVID-19)康复患者和流感疫苗接种后健康对照者的多组学数据(表面蛋白和转录组)进行分析。单细胞多组学数据集被分为五个子集,对应五种免疫细胞亚型:B 细胞、CD4+T 细胞、CD8+T 细胞、单核细胞和自然杀伤细胞。每个细胞由 28402 个 scRNA-seq(RNA)特征、3 个 Hash Tag Oligo(HTO)特征、138 个 Cellular indexing of transcriptomes and epitopes by sequencing(CITE)特征和 23569 个 Single Cell Transform(SCT)特征表示。确定了一些多组学标记物,并构建了有效的分类器。我们的研究结果表明,COVID-19 康复患者的免疫状态存在明显差异,其特征是核糖体蛋白(RPS26)表达水平降低,免疫细胞表面蛋白(CD33、CD48)表达水平升高。值得注意的是,TMEM176B,一种膜蛋白,在 COVID-19 恢复期患者的单核细胞中高表达。这些观察结果有助于区分免疫细胞亚型之间的分子差异,并有助于了解 COVID-19 对免疫系统的长期影响,这对于治疗 COVID-19 等传染病具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验