Zhu Dongdong, Li Lu, Ji Yunlong, Wang Pan
Department of Chemistry, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China.
Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China.
J Colloid Interface Sci. 2025 Jan 15;678(Pt A):88-97. doi: 10.1016/j.jcis.2024.08.110. Epub 2024 Aug 15.
Flow battery is a safe and scalable energy storage technology in effectively utilizing clean power and mitigating carbon emissions from fossil fuel consumption. In the present work, we demonstrate an aqueous colloid flow battery (ACFB) with well-dispersed colloids based on nano-sized Prussian blue (PB) cubes, aiming at expanding the chosen area of various nano redox materials and lowering the cost of chemicals. Taking advantage of the two redox pairs of PB, the developed all-PB cell employing a low-cost dialysis membrane with the synthesized PB on both sides displays an open-circuit voltage (OCV) of 0.74 V. Moreover, when paired with an organic tetra pyridine macrocycle the cell with PB as positive electrolyte exhibits an OCV of 1.33 V and a capacity fade rate of 0.039 %/cycle (0.8 %/day). Redox-active colloids exhibit enduring physicochemical stability, with no evident structural or morphological changes after extensive cycling, highlighting their potential for cost-effective and reliable ACFB energy storage.