Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India.
Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India.
Int J Biol Macromol. 2024 Oct;278(Pt 4):135022. doi: 10.1016/j.ijbiomac.2024.135022. Epub 2024 Aug 23.
Antimicrobial resistance (AMR) poses a significant global health threat, rendering standard antibiotics ineffective against multi-drug resistant bacteria. To tackle this urgent issue, innovative approaches are essential. Liposomes, small spherical vesicles made of a phospholipid bilayer, present a promising solution. These vesicles can encapsulate various medicines and are both biocompatible and biodegradable. Their ability to be modified for targeted tissue or cell uptake makes them an ideal drug delivery system. By delivering antibiotics directly to infection sites, liposomes minimize side effects and reduce the development of resistance. However, challenges such as poor stability and rapid drug leakage limit their biological application. Chitosan, a biocompatible polymer, enhances liposome interaction with specific tissues or cells, enabling selective drug release at infection sites. Incorporating chitosan into liposome formulations alters and diversifies their surface characteristics through electrostatic interactions, resulting in improved stability and pH-sensitive drug release. These interactions are crucial for enhancing drug retention and targeted delivery, especially in varying pH environments like tumor sites or infection areas, thereby improving therapeutic outcomes and reducing systemic side effects. This review discusses recent advancements, challenges, and the need for further research to optimize liposome formulations and enhance targeted drug delivery for effective AMR treatment. Chitosan-modified liposomes offer a promising strategy to overcome AMR and improve antimicrobial therapies.
抗菌药物耐药性(AMR)对全球健康构成重大威胁,使标准抗生素对多药耐药菌无效。为了解决这个紧迫的问题,需要创新的方法。脂质体是由磷脂双层组成的小的球形囊泡,是一种很有前途的解决方案。这些囊泡可以包裹各种药物,具有生物相容性和可生物降解性。它们可以被修饰以靶向特定的组织或细胞摄取,这使它们成为理想的药物传递系统。通过将抗生素直接递送到感染部位,脂质体可以最大限度地减少副作用并降低耐药性的发展。然而,稳定性差和药物快速泄漏等挑战限制了它们的生物学应用。壳聚糖是一种生物相容性聚合物,可增强脂质体与特定组织或细胞的相互作用,使药物在感染部位选择性释放。通过静电相互作用将壳聚糖纳入脂质体配方中,可以改变和多样化其表面特性,从而提高稳定性和 pH 敏感性药物释放。这些相互作用对于增强药物保留和靶向递送至关重要,特别是在不同 pH 值的环境中,如肿瘤部位或感染区域,从而改善治疗效果并减少全身副作用。本综述讨论了脂质体配方的最新进展、挑战以及进一步研究的必要性,以优化脂质体配方并增强靶向药物传递,从而有效治疗 AMR。壳聚糖修饰的脂质体为克服 AMR 和改善抗菌治疗提供了有前途的策略。