Suppr超能文献

基于数据驱动的方法识别影响表型可塑性的环境变量,以促进未来气候条件下的育种。

Data-driven identification of environmental variables influencing phenotypic plasticity to facilitate breeding for future climates.

机构信息

Department of Agronomy, Iowa State University, Ames, IA, 50011-3650, USA.

Plant Sciences Institute, Iowa State University, Ames, IA, 50011-3650, USA.

出版信息

New Phytol. 2024 Oct;244(2):618-634. doi: 10.1111/nph.19937. Epub 2024 Aug 25.

Abstract

Phenotypic plasticity describes a genotype's ability to produce different phenotypes in response to different environments. Breeding crops that exhibit appropriate levels of plasticity for future climates will be crucial to meeting global demand, but knowledge of the critical environmental factors is limited to a handful of well-studied major crops. Using 727 maize (Zea mays L.) hybrids phenotyped for grain yield in 45 environments, we investigated the ability of a genetic algorithm and two other methods to identify environmental determinants of grain yield from a large set of candidate environmental variables constructed using minimal assumptions. The genetic algorithm identified pre- and postanthesis maximum temperature, mid-season solar radiation, and whole season net evapotranspiration as the four most important variables from a candidate set of 9150. Importantly, these four variables are supported by previous literature. After calculating reaction norms for each environmental variable, candidate genes were identified and gene annotations investigated to demonstrate how this method can generate insights into phenotypic plasticity. The genetic algorithm successfully identified known environmental determinants of hybrid maize grain yield. This demonstrates that the methodology could be applied to other less well-studied phenotypes and crops to improve understanding of phenotypic plasticity and facilitate breeding crops for future climates.

摘要

表型可塑性描述了基因型在不同环境下产生不同表型的能力。培育在未来气候下表现出适当可塑性的作物对于满足全球需求至关重要,但对于关键环境因素的了解仅限于少数经过充分研究的主要作物。本研究使用 727 个玉米(Zea mays L.)杂种,在 45 个环境中对其籽粒产量进行表型分析,我们利用最小假设构建的候选环境变量的大集合,利用遗传算法和另外两种方法来研究识别对籽粒产量有重要影响的环境决定因素的能力。遗传算法从 9150 个候选变量中识别出了开花前和开花期的最高温度、中期太阳辐射和整个生育期净蒸散量作为四个最重要的变量。重要的是,这些四个变量得到了之前文献的支持。在为每个环境变量计算反应规范后,确定了候选基因并对基因注释进行了研究,以展示该方法如何产生对表型可塑性的深入了解。遗传算法成功地识别了杂交玉米籽粒产量的已知环境决定因素。这表明该方法可以应用于其他研究较少的表型和作物,以提高对表型可塑性的理解,并促进培育未来气候的作物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验