Department of Plant Sciences, University of California, Davis, California 95616, USA.
Research & Development, Corteva Agriscience, Johnston, Iowa 50131, USA.
Plant Physiol. 2022 Feb 4;188(2):1141-1157. doi: 10.1093/plphys/kiab527.
Plant physiology can offer invaluable insights to accelerate genetic gain. However, translating physiological understanding into breeding decisions has been an ongoing and complex endeavor. Here we demonstrate an approach to leverage physiology and genomics to hasten crop improvement. A half-diallel maize (Zea mays) experiment resulting from crossing 9 elite inbreds was conducted at 17 locations in the USA corn belt and 6 locations at managed stress environments between 2017 and 2019 covering a range of water environments from 377 to 760 mm of evapotranspiration and family mean yields from 542 to 1,874 g m-2. Results from analyses of 35 families and 2,367 hybrids using crop growth models linked to whole-genome prediction (CGM-WGP) demonstrated that CGM-WGP offered a predictive accuracy advantage compared to BayesA for untested genotypes evaluated in untested environments (r = 0.43 versus r = 0.27). In contrast to WGP, CGMs can deal effectively with time-dependent interactions between a physiological process and the environment. To facilitate the selection/identification of traits for modeling yield, an algorithmic approach was introduced. The method was able to identify 4 out of 12 candidate traits known to explain yield variation in maize. The estimation of allelic and physiological values for each genotype using the CGM created in silico phenotypes (e.g. root elongation) and physiological hypotheses that could be tested within the breeding program in an iterative manner. Overall, the approach and results suggest a promising future to fully harness digital technologies, gap analysis, and physiological knowledge to hasten genetic gain by improving predictive skill and definition of breeding goals.
植物生理学可以提供宝贵的见解,以加速遗传增益。然而,将生理理解转化为育种决策一直是一项持续而复杂的努力。在这里,我们展示了一种利用生理学和基因组学来加速作物改良的方法。在 2017 年至 2019 年期间,在美国玉米带的 17 个地点和管理压力环境的 6 个地点进行了一项半双列玉米(Zea mays)实验,该实验是由 9 个精英自交系杂交而成的,涵盖了从 377 到 760 毫米蒸发蒸腾量的一系列水分环境和从 542 到 1874 克/平方米的家族平均产量。使用与全基因组预测(CGM-WGP)相关的作物生长模型对 35 个家系和 2367 个杂种进行分析的结果表明,与未经验证的基因型在未经验证的环境中评估的 BayesA 相比,CGM-WGP 提供了预测准确性优势(r=0.43 与 r=0.27)。与 WGP 不同,CGM 可以有效地处理生理过程与环境之间随时间变化的相互作用。为了促进用于建模产量的性状的选择/鉴定,引入了一种算法方法。该方法能够从 12 个候选性状中识别出 4 个已知可以解释玉米产量变化的性状。使用 CGM 对每个基因型进行等位基因和生理值的估计,从而在迭代的方式中在育种计划中创建了虚拟表型(例如根伸长)和生理假设,可以对其进行测试。总体而言,该方法和结果表明,有希望充分利用数字技术、差距分析和生理学知识,通过提高预测能力和定义育种目标来加速遗传增益。