Suppr超能文献

基于近红外脑功能成像的意识障碍患者清醒预测的静息态脑功能连接的临床前标志物研究:一项初步研究。

Exploration of resting-state brain functional connectivity as preclinical markers for arousal prediction in prolonged disorders of consciousness: A pilot study based on functional near-infrared spectroscopy.

机构信息

Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.

Department of Rehabilitation Medicine, West China Second Hospital of Sichuan University, Chendu, China.

出版信息

Brain Behav. 2024 Aug;14(8):e70002. doi: 10.1002/brb3.70002.

Abstract

BACKGROUND

There is no diagnostic assessment procedure with moderate or strong evidence of use, and evidence for current means of treating prolonged disorders of consciousness (pDOC) is sparse. This may be related to the fact that the mechanisms of pDOC have not been studied deeply enough and are not clear enough. Therefore, the aim of this study was to explore the mechanism of pDOC using functional near-infrared spectroscopy (fNIRS) to provide a basis for the treatment of pDOC, as well as to explore preclinical markers for determining the arousal of pDOC patients.

METHODS

Five minutes resting-state data were collected from 10 pDOC patients and 13healthy adults using fNIRS. Based on the concentrations of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) in the time series, the resting-state cortical brain functional connectivity strengths of the two groups were calculated, and the functional connectivity strengths of homologous and heterologous brain networks were compared at the sensorimotor network (SEN), dorsal attention network (DAN), ventral attention network (VAN), default mode network (DMN), frontoparietal network (FPN), and visual network (VIS) levels. Univariate binary logistic regression analyses were performed on brain networks with statistically significant differences to identify brain networks associated with arousal in pDOC patients. The receiver operating characteristic (ROC) curves were further analyzed to determine the cut-off value of the relevant brain networks to provide clinical biomarkers for the prediction of arousal in pDOC patients.

RESULTS

The results showed that the functional connectivity strengths of oxyhemoglobin (HbO)-based SEN∼SEN, VIS∼VIS, DAN∼DAN, DMN∼DMN, SEN∼VIS, SEN∼FPN, SEN∼DAN, SEN∼DMN, VIS∼FPN, VIS∼DAN, VIS∼DMN, HbR-based SEN∼SEN, and SEN∼DAN were significantly reduced in the pDOC group and were factors that could reflect the participants' state of consciousness. The cut-off value of resting-state functional connectivity strength calculated by ROC curve analysis can be used as a potential preclinical marker for predicting the arousal state of subjects.

CONCLUSION

Resting-state functional connectivity strength of cortical networks is significantly reduced in pDOC patients. The cut-off values of resting-state functional connectivity strength are potential preclinical markers for predicting arousal in pDOC patients.

摘要

背景

目前尚无具有中等或高强度使用证据的诊断评估程序,而目前治疗持续性意识障碍(pDOC)的方法证据也很少。这可能与 pDOC 的机制尚未得到深入研究且不够明确有关。因此,本研究旨在使用功能近红外光谱(fNIRS)探索 pDOC 的机制,为治疗 pDOC 提供依据,并探索用于确定 pDOC 患者觉醒的临床前标志物。

方法

使用 fNIRS 从 10 名 pDOC 患者和 13 名健康成年人中采集 5 分钟静息状态数据。基于时间序列中氧合血红蛋白(HbO)和脱氧血红蛋白(HbR)的浓度,计算两组静息状态皮质脑功能连接强度,并在感觉运动网络(SEN)、背侧注意网络(DAN)、腹侧注意网络(VAN)、默认模式网络(DMN)、额顶网络(FPN)和视觉网络(VIS)水平上比较同源和异源脑网络的功能连接强度。对具有统计学差异的脑网络进行单变量二分类逻辑回归分析,以识别与 pDOC 患者觉醒相关的脑网络。进一步对受试者工作特征(ROC)曲线进行分析,确定相关脑网络的截断值,为预测 pDOC 患者觉醒提供临床生物标志物。

结果

结果显示,基于 HbO 的 SEN∼SEN、VIS∼VIS、DAN∼DAN、DMN∼DMN、SEN∼VIS、SEN∼FPN、SEN∼DAN、SEN∼DMN、VIS∼FPN、VIS∼DAN、VIS∼DMN、HbR 基于 SEN∼SEN 和 SEN∼DAN 的 SEN∼DAN 的功能连接强度在 pDOC 组中显著降低,这些因素可反映参与者的意识状态。ROC 曲线分析计算的静息态功能连接强度的截断值可作为预测受试者觉醒状态的潜在临床前标志物。

结论

pDOC 患者皮质网络的静息态功能连接强度显著降低。静息态功能连接强度的截断值是预测 pDOC 患者觉醒的潜在临床前标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/251e/11345494/1d8e9ff44278/BRB3-14-e70002-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验