Lee Hock Beng, Mohamed Asmaa, Kumar Neetesh, Zain Karimy Nurfatin Hafizah, Satale Vinayak Vitthal, Tyagi Barkha, Kim Do-Hyung, Kang Jae-Wook
Department of Flexible and Printable Electronics, LANL-JBNU Engineering Institute-Korea, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
Department of Physics, Faculty of Science, South Valley University, Qena, 83523, Egypt.
Small Methods. 2025 Jan;9(1):e2400850. doi: 10.1002/smtd.202400850. Epub 2024 Aug 25.
The performance and scalability of perovskite solar cells (PSCs) based on 3D formamidinium lead triiodide (FAPbI) absorber are often hindered by defects at the surface and grain boundaries of the perovskite. To address this, the study demonstrates the use of pyrrolidinium iodide for the in situ formation of an energetically aligned 1D pyrrolidinium lead triiodide (PyPbI) capping layer over the 3D FAbI perovskite. The thermodynamically stable PyPbI perovskitoids, formed through cation exchange reactions, effectively reduce surface and grain boundary defects in the FAPbI perovskite. In addition to improved phase stability, the resulting 1D/3D perovskite film forms a cascade energy band alignment with the other functional layers in PSCs, enabling a barrier-free interfacial charge transport. With a maximum power conversion efficiency (PCE) of ≈23.1% and ≈20.7% at active areas of 0.09 and 1.05 cm, respectively, the 1D/3D PSCs demonstrate excellent performance and scalability. Leveraging this improved scalability, the study has successfully developed a mechanically-scribed 1D/3D perovskite mini-module with an unprecedentedly high PCE of ≈20.6% and a total power output of ≈270 mW at an active area of ≈13.0 cm. The 1D/3D multi-dimensional perovskite film developed herein holds great promise for producing low-cost, high-performance perovskite photovoltaics at both the cell and module levels.
基于三维甲脒铅三碘化物(FAPbI)吸收体的钙钛矿太阳能电池(PSC)的性能和可扩展性常常受到钙钛矿表面和晶界缺陷的阻碍。为了解决这一问题,该研究展示了使用碘化吡咯烷鎓在三维FAbI钙钛矿上原位形成能量对齐的一维碘化吡咯烷鎓铅三碘化物(PyPbI)覆盖层。通过阳离子交换反应形成的热力学稳定的PyPbI类钙钛矿有效地减少了FAPbI钙钛矿中的表面和晶界缺陷。除了提高相稳定性外,所得的一维/三维钙钛矿薄膜与PSC中的其他功能层形成级联能带排列,实现无势垒的界面电荷传输。在0.09和1.05平方厘米的有源面积下,一维/三维PSC的最大功率转换效率(PCE)分别约为23.1%和20.7%,展现出优异的性能和可扩展性。利用这种提高的可扩展性,该研究成功开发了一种机械划刻的一维/三维钙钛矿微型模块,在约13.0平方厘米的有源面积下,具有前所未有的约20.6%的高PCE和约270毫瓦的总功率输出。本文开发的一维/三维多维钙钛矿薄膜在电池和模块层面生产低成本、高性能的钙钛矿光伏器件方面具有巨大潜力。