Hidalgo Juanita, Kaiser Waldemar, An Yu, Li Ruipeng, Oh Zion, Castro-Méndez Andrés-Felipe, LaFollette Diana K, Kim Sanggyun, Lai Barry, Breternitz Joachim, Schorr Susan, Perini Carlo A R, Mosconi Edoardo, De Angelis Filippo, Correa-Baena Juan-Pablo
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), Perugia 06123, Italy.
J Am Chem Soc. 2023 Nov 2;145(45):24549-57. doi: 10.1021/jacs.3c05657.
Mixed-cation metal halide perovskites have shown remarkable progress in photovoltaic applications with high power conversion efficiencies. However, to achieve large-scale deployment of this technology, efficiencies must be complemented by long-term durability. The latter is limited by external factors, such as exposure to humidity and air, which lead to the rapid degradation of the perovskite materials and devices. In this work, we study the mechanisms causing Cs and formamidinium (FA)-based halide perovskite phase transformations and stabilization during moisture and air exposure. We use X-ray scattering, X-ray photoelectron spectroscopy, and first-principles calculations to study these chemical interactions and their effects on structure. We unravel a surface reaction pathway involving the dissolution of FAI by water and iodide oxidation by oxygen, driving the Cs/FA ratio into thermodynamically unstable regions, leading to undesirable phase transformations. This work demonstrates the interplay of bulk phase transformations with surface chemical reactions, providing a detailed understanding of the degradation mechanism and strategies for designing durable and efficient perovskite materials.
混合阳离子金属卤化物钙钛矿在具有高功率转换效率的光伏应用中已取得显著进展。然而,要实现该技术的大规模应用,除了效率之外,还必须具备长期耐久性。而长期耐久性受到诸如暴露于湿度和空气中等外部因素的限制,这些因素会导致钙钛矿材料和器件迅速降解。在这项工作中,我们研究了在湿度和空气暴露过程中,导致基于铯(Cs)和甲脒(FA)的卤化物钙钛矿相变和稳定化的机制。我们使用X射线散射、X射线光电子能谱和第一性原理计算来研究这些化学相互作用及其对结构的影响。我们揭示了一条表面反应途径,该途径涉及水对FAI的溶解以及氧气对碘化物的氧化,从而使Cs/FA比进入热力学不稳定区域,导致不良的相变。这项工作展示了体相转变与表面化学反应之间的相互作用,为降解机制提供了详细的理解,并为设计耐用且高效的钙钛矿材料提供了策略。