Suppr超能文献

基于主成分分析约束的多核矩阵融合网络:一种用于癌症亚型识别的新方法。

PCA-constrained multi-core matrix fusion network: A novel approach for cancer subtype identification.

机构信息

School of Information Engineering, Nanchang Institute of Technology, Jiangxi 330099, P. R. China.

Jiangxi Zhongyan Industry Co., Ltd., Jiangxi 330099, P. R. China.

出版信息

J Bioinform Comput Biol. 2024 Aug;22(4):2450014. doi: 10.1142/S0219720024500148. Epub 2024 Aug 24.

Abstract

Cancer subtyping refers to categorizing a particular cancer type into distinct subtypes or subgroups based on a range of molecular characteristics, clinical manifestations, histological features, and other relevant factors. The identification of cancer subtypes can significantly enhance precision in clinical practice and facilitate personalized diagnosis and treatment strategies. Recent advancements in the field have witnessed the emergence of numerous network fusion methods aimed at identifying cancer subtypes. The majority of these fusion algorithms, however, solely rely on the fusion network of a single core matrix for the identification of cancer subtypes and fail to comprehensively capture similarity. To tackle this issue, in this study, we propose a novel cancer subtype recognition method, referred to as PCA-constrained multi-core matrix fusion network (PCA-MM-FN). The PCA-MM-FN algorithm initially employs three distinct methods to obtain three core matrices. Subsequently, the obtained core matrices are projected into a shared subspace using principal component analysis, followed by a weighted network fusion. Lastly, spectral clustering is conducted on the fused network. The results obtained from conducting experiments on the mRNA expression, DNA methylation, and miRNA expression of five TCGA datasets and three multi-omics benchmark datasets demonstrate that the proposed PCA-MM-FN approach exhibits superior accuracy in identifying cancer subtypes compared to the existing methods.

摘要

癌症亚型是指根据一系列分子特征、临床表现、组织学特征和其他相关因素,将特定的癌症类型分为不同的亚型或亚组。癌症亚型的鉴定可以显著提高临床实践的精准度,并促进个性化的诊断和治疗策略。最近,该领域的研究进展见证了许多网络融合方法的出现,旨在识别癌症亚型。然而,这些融合算法中的大多数仅依赖于单个核心矩阵的融合网络来识别癌症亚型,而无法全面捕捉相似性。为了解决这个问题,在本研究中,我们提出了一种新的癌症亚型识别方法,称为 PCA 约束多核矩阵融合网络(PCA-MM-FN)。PCA-MM-FN 算法首先采用三种不同的方法获得三个核心矩阵。然后,使用主成分分析将获得的核心矩阵投影到共享子空间中,然后进行加权网络融合。最后,对融合网络进行谱聚类。我们在五个 TCGA 数据集的 mRNA 表达、DNA 甲基化和 miRNA 表达以及三个多组学基准数据集上进行实验的结果表明,与现有方法相比,所提出的 PCA-MM-FN 方法在识别癌症亚型方面具有更高的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验