文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多参数 MRI 生成的癌症风险图对前列腺癌病灶检测、体积量化和高级别癌症分级,以组织病理学为参考标准。

Prostate cancer lesion detection, volume quantification and high-grade cancer differentiation using cancer risk maps derived from multiparametric MRI with histopathology as the reference standard.

机构信息

Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States.

Department of Urology, University of California, San Francisco, CA, United States; Department of Pathology, University of California, San Francisco, CA, United States.

出版信息

Magn Reson Imaging. 2023 Jun;99:48-57. doi: 10.1016/j.mri.2023.01.006. Epub 2023 Jan 11.


DOI:10.1016/j.mri.2023.01.006
PMID:36641104
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11229728/
Abstract

Multi-parametric MRI (mpMRI) has proven itself a clinically useful tool to assess prostate cancer (PCa). Our objective was to generate PCa risk maps to quantify the volume and location of both all PCa and high grade (Gleason grade group ≥ 3) PCa. Such capabilities would aid physicians and patients in treatment decisions, targeting biopsy, and planning focal therapy. A cohort of men with biopsy proven prostate cancer and pre-prostatectomy mpMRI were studied. PCa and benign ROIs (1524) were identified on mpMRI and histopathology with histopathology serving as the reference standard. Logistic regression models were created to differentiate PCa from benign tissues. The MRI images were registered to ensure correct overlay. The cancer models were applied to each image voxel within prostates to create probability maps of cancer and of high-grade cancer. Use of an optimum probability threshold quantified PCa volume for all lesions >0.1 cc. Accuracies were calculated using area under the curve (AUC) for the receiver operating characteristic (ROC). The PCa models utilized apparent diffusion coefficient (ADC), T2 weighted (T2W), dynamic contrast-enhanced MRI (DCE MRI) enhancement slope, and DCE MRI washout as the statistically significant MRI scans. Application of the PCa maps method provided total PCa volume and individual lesion volumes. The AUCs derived from lesion analysis were 0.91 for all PCa and 0.73 for high-grade PCa. At the optimum threshold, the PCa maps detected 135 / 150 (90%) histopathological lesions >0.1 cc. This study showed the feasibility of cancer risk maps, created from pre-prostatectomy, mpMR images validated with histopathology, to detect PCa lesions >0.1 cc. The method quantified the volume of cancer within the prostate. Method improvements were identified by determining root causes for over and underestimation of cancer volumes. The maps have the potential for improved non-invasive capability in quantitative detection, localization, volume estimation, and MRI characterization of PCa.

摘要

多参数 MRI(mpMRI)已被证明是一种用于评估前列腺癌(PCa)的临床有用工具。我们的目标是生成 PCa 风险图,以量化所有 PCa 和高级别(Gleason 分级组≥3)PCa 的体积和位置。这些功能将有助于医生和患者做出治疗决策、靶向活检和规划局灶性治疗。本研究纳入了一组经活检证实患有前列腺癌和术前 mpMRI 的男性患者。mpMRI 和组织病理学上均识别出 PCa 和良性 ROI(1524 个),并以组织病理学作为参考标准。建立了逻辑回归模型以区分 PCa 和良性组织。将 MRI 图像进行配准以确保正确叠加。将癌症模型应用于前列腺内的每个图像体素,以创建癌症和高级别癌症的概率图。使用最佳概率阈值量化了所有>0.1 cc 的病变的 PCa 体积。使用受试者工作特征(ROC)的曲线下面积(AUC)计算了准确性。PCa 模型利用表观扩散系数(ADC)、T2 加权(T2W)、动态对比增强 MRI(DCE MRI)增强斜率和 DCE MRI 洗脱作为具有统计学意义的 MRI 扫描。应用 PCa 图谱方法提供了总 PCa 体积和单个病变体积。病变分析得出的 AUC 分别为所有 PCa 的 0.91 和高级别 PCa 的 0.73。在最佳阈值下,PCa 图谱检测到 135/150(90%)>0.1 cc 的组织病理学病变。本研究表明,从术前 mpMRI 图像创建验证组织病理学的癌症风险图是可行的,可检测>0.1 cc 的 PCa 病变。该方法量化了前列腺内的癌症体积。通过确定癌症体积高估和低估的根本原因,确定了方法改进。该图谱具有提高 PCa 的定量检测、定位、体积估计和 MRI 特征描述的非侵入性能力的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23e3/11229728/6c2b6eaf16e2/nihms-2004256-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23e3/11229728/84cdc080f5c1/nihms-2004256-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23e3/11229728/653cb29cd141/nihms-2004256-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23e3/11229728/ec533a18ddb3/nihms-2004256-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23e3/11229728/a15fa8528ae2/nihms-2004256-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23e3/11229728/5f980e86bb79/nihms-2004256-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23e3/11229728/0d8cd5df21c5/nihms-2004256-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23e3/11229728/6c2b6eaf16e2/nihms-2004256-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23e3/11229728/84cdc080f5c1/nihms-2004256-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23e3/11229728/653cb29cd141/nihms-2004256-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23e3/11229728/ec533a18ddb3/nihms-2004256-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23e3/11229728/a15fa8528ae2/nihms-2004256-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23e3/11229728/5f980e86bb79/nihms-2004256-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23e3/11229728/0d8cd5df21c5/nihms-2004256-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23e3/11229728/6c2b6eaf16e2/nihms-2004256-f0007.jpg

相似文献

[1]
Prostate cancer lesion detection, volume quantification and high-grade cancer differentiation using cancer risk maps derived from multiparametric MRI with histopathology as the reference standard.

Magn Reson Imaging. 2023-6

[2]
Characterization and stratification of prostate lesions based on comprehensive multiparametric MRI using detailed whole-mount histopathology as a reference standard.

NMR Biomed. 2017-9-29

[3]
Comparison of T2-Weighted Imaging, DWI, and Dynamic Contrast-Enhanced MRI for Calculation of Prostate Cancer Index Lesion Volume: Correlation With Whole-Mount Pathology.

AJR Am J Roentgenol. 2018-12-12

[4]
Multiparametric MRI in detection and staging of prostate cancer.

Dan Med J. 2017-2

[5]
Understanding Spatial Correlation Between Multiparametric MRI Performance and Prostate Cancer.

J Magn Reson Imaging. 2024-11

[6]
Semi-quantitative and quantitative dynamic contrast-enhanced (DCE) MRI parameters as prostate cancer imaging biomarkers for biologically targeted radiation therapy.

Cancer Imaging. 2022-12-19

[7]
Diagnosis of Prostate Cancer by Use of MRI-Derived Quantitative Risk Maps: A Feasibility Study.

AJR Am J Roentgenol. 2019-4-30

[8]
Identification of prostate cancer using multiparametric MR imaging characteristics of prostate tissues referenced to whole mount histopathology.

Magn Reson Imaging. 2022-1

[9]
Evaluation of Diffusion Kurtosis Imaging Versus Standard Diffusion Imaging for Detection and Grading of Peripheral Zone Prostate Cancer.

Invest Radiol. 2015-8

[10]
T1 Mapping of the Prostate Using Single-Shot T1FLASH: A Clinical Feasibility Study to Optimize Prostate Cancer Assessment.

Invest Radiol. 2023-6-1

引用本文的文献

[1]
An overview of utilizing artificial intelligence in localized prostate cancer imaging.

Expert Rev Med Devices. 2025-4

[2]
Cobalt Serum Level as a Biomarker of Cause-Specific Survival among Prostate Cancer Patients.

Cancers (Basel). 2024-7-23

[3]
A Comparative Evaluation of Multiparametric Magnetic Resonance Imaging and Micro-Ultrasound for the Detection of Clinically Significant Prostate Cancer in Patients with Prior Negative Biopsies.

Diagnostics (Basel). 2024-3-1

[4]
Investigating Efficient Risk-Stratified Pathways for the Early Detection of Clinically Significant Prostate Cancer.

J Pers Med. 2024-1-23

[5]
High-grade prostate cancer demonstrates preferential growth in the cranio-caudal axis and provides discrimination of disease grade in an MRI parametric model.

Br J Radiol. 2024-2-28

[6]
Full resolution reconstruction of whole-mount sections from digitized individual tissue fragments.

Sci Rep. 2024-1-17

本文引用的文献

[1]
Machine Learning in Prostate MRI for Prostate Cancer: Current Status and Future Opportunities.

Diagnostics (Basel). 2022-1-24

[2]
Deep learning for fully automatic detection, segmentation, and Gleason grade estimation of prostate cancer in multiparametric magnetic resonance images.

Sci Rep. 2022-2-22

[3]
Cancer statistics, 2022.

CA Cancer J Clin. 2022-1

[4]
Identification of prostate cancer using multiparametric MR imaging characteristics of prostate tissues referenced to whole mount histopathology.

Magn Reson Imaging. 2022-1

[5]
Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI.

Eur Radiol. 2020-12

[6]
PI-RADS 3 Lesions: Role of Prostate MRI Texture Analysis in the Identification of Prostate Cancer.

Curr Probl Diagn Radiol. 2021

[7]
Detection and Localization of Prostate Cancer at 3-T Multiparametric MRI Using PI-RADS Segmentation.

AJR Am J Roentgenol. 2019-6

[8]
Detection of Individual Prostate Cancer Foci via Multiparametric Magnetic Resonance Imaging.

Eur Urol. 2018-12-1

[9]
An Automated Multiparametric MRI Quantitative Imaging Prostate Habitat Risk Scoring System for Defining External Beam Radiation Therapy Boost Volumes.

Int J Radiat Oncol Biol Phys. 2018-6-13

[10]
Computer-aided diagnosis of prostate cancer on magnetic resonance imaging using a convolutional neural network algorithm.

BJU Int. 2018-6-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索