文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

螺内酯治疗射血分数保留心力衰竭患者的反应:基于机器学习的两项随机对照试验分析。

Treatment response to spironolactone in patients with heart failure with preserved ejection fraction: a machine learning-based analysis of two randomized controlled trials.

机构信息

Department of Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany; Leipzig Heart Institute at Heart Center Leipzig, Leipzig, Germany.

Department of Cardiology, University Hospital Leipzig and Clinic for Cardiology and Pneumology, University Medicine Göttingen, Germany; German Cardiovascular Research Center (DZHK), Partner Site Göttingen, Germany.

出版信息

EBioMedicine. 2023 Oct;96:104795. doi: 10.1016/j.ebiom.2023.104795. Epub 2023 Sep 7.


DOI:10.1016/j.ebiom.2023.104795
PMID:37689023
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10498181/
Abstract

BACKGROUND: Whether there is a subset of patients with heart failure with preserved ejection fraction (HFpEF) that benefit from spironolactone therapy is unclear. We applied a machine learning approach to identify responders and non-responders to spironolactone among patients with HFpEF in two large randomized clinical trials. METHODS: Using a reiterative cluster allocating permutation approach, patients from the derivation cohort (Aldo-DHF) were identified according to their treatment response to spironolactone with respect to improvement in E/e'. Heterogenous features of response ('responders' and 'non-responders') were characterized by an extreme gradient boosting (XGBoost) algorithm. XGBoost was used to predict treatment response in the validation cohort (TOPCAT). The primary endpoint of the validation cohort was a combined endpoint of cardiovascular mortality, aborted cardiac arrest, or heart failure hospitalization. Patients with missing variables for the XGboost model were excluded from the validation analysis. FINDINGS: Out of 422 patients from the derivation cohort, reiterative cluster allocating permutation identified 159 patients (38%) as spironolactone responders, in whom E/e' significantly improved (p = 0.005). Within the validation cohort (n = 525) spironolactone treatment significantly reduced the occurrence of the primary outcome among responders (n = 185, p log rank = 0.008), but not among patients in the non-responder group (n = 340, p log rank = 0.52). INTERPRETATION: Machine learning approaches might aid in identifying HFpEF patients who are likely to show a favorable therapeutic response to spironolactone. FUNDING: See Acknowledgements section at the end of the manuscript.

摘要

背景:射血分数保留的心力衰竭(HFpEF)患者中是否存在对螺内酯治疗有反应的亚组尚不清楚。我们应用机器学习方法,在两项大型随机临床试验中,确定 HFpEF 患者中螺内酯治疗的反应者和无反应者。

方法:使用反复聚类分配置换方法,根据 Aldo-DHF 研究中螺内酯治疗对 E/e'改善的反应,从推导队列中识别出患者对螺内酯的反应情况。通过极端梯度增强(XGBoost)算法对反应的异质性特征(“反应者”和“无反应者”)进行特征描述。XGBoost 用于预测验证队列(TOPCAT)的治疗反应。验证队列的主要终点是心血管死亡率、心搏骤停未遂或心力衰竭住院的复合终点。对 XGBoost 模型缺失变量的患者被排除在验证分析之外。

结果:在推导队列的 422 名患者中,反复聚类分配置换方法确定了 159 名患者(38%)为螺内酯反应者,他们的 E/e'显著改善(p=0.005)。在验证队列(n=525)中,螺内酯治疗显著降低了反应者(n=185)发生主要结局的发生率(p log rank=0.008),但在无反应者组(n=340)中没有降低(p log rank=0.52)。

解释:机器学习方法可能有助于识别 HFpEF 患者,这些患者可能对螺内酯治疗有良好的治疗反应。

资助:见文末致谢部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e301/10498181/341c1175ebb7/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e301/10498181/9210c3952e45/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e301/10498181/04a6f092818e/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e301/10498181/1c7d6402ce12/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e301/10498181/341c1175ebb7/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e301/10498181/9210c3952e45/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e301/10498181/04a6f092818e/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e301/10498181/1c7d6402ce12/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e301/10498181/341c1175ebb7/gr3.jpg

相似文献

[1]
Treatment response to spironolactone in patients with heart failure with preserved ejection fraction: a machine learning-based analysis of two randomized controlled trials.

EBioMedicine. 2023-10

[2]
Interaction Between Spironolactone and Natriuretic Peptides in Patients With Heart Failure and Preserved Ejection Fraction: From the TOPCAT Trial.

JACC Heart Fail. 2017-4

[3]
Sex Differences in Outcomes and Responses to Spironolactone in Heart Failure With Preserved Ejection Fraction: A Secondary Analysis of TOPCAT Trial.

JACC Heart Fail. 2019-3

[4]
Spironolactone effect on cardiac structure and function of patients with heart failure and preserved ejection fraction: a pooled analysis of three randomized trials.

Eur J Heart Fail. 2023-1

[5]
Atrial Fibrillation in Heart Failure With Preserved Ejection Fraction: The TOPCAT Trial.

JACC Heart Fail. 2018-7-11

[6]
Racial Differences in Characteristics and Outcomes of Patients With Heart Failure and Preserved Ejection Fraction in the Treatment of Preserved Cardiac Function Heart Failure Trial.

Circ Heart Fail. 2018-3

[7]
Spironolactone in Patients With Heart Failure, Preserved Ejection Fraction, and Worsening Renal Function.

J Am Coll Cardiol. 2021-3-9

[8]
Clinical Phenogroups in Heart Failure With Preserved Ejection Fraction: Detailed Phenotypes, Prognosis, and Response to Spironolactone.

JACC Heart Fail. 2020-3

[9]
Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction.

Eur Heart J. 2016-2-1

[10]
Designing Future Clinical Trials in Heart Failure With Preserved Ejection Fraction: Lessons From TOPCAT.

Curr Heart Fail Rep. 2017-8

引用本文的文献

[1]
Use of Spironolactone for the Treatment of Heart Failure With Preserved Ejection Fraction: Efficacy and Clinical Implications in Light of Recent Evidence.

Cureus. 2025-6-13

[2]
Comparison of Metoprolol and Sacubitril/Valsartan in Chinese Patients With Heart Failure: A Retrospective Cohort Study.

Dose Response. 2025-5-21

[3]
Magnesium-assisted hydrogen improves isoproterenol-induced heart failure.

Med Gas Res. 2025-12-1

[4]
Association of body roundness index with cardiovascular disease in patients with cardiometabolic syndrome: a cross-sectional study based on NHANES 2009-2018.

Front Endocrinol (Lausanne). 2025-2-3

[5]
Prognostic value of anion gap for patients with heart failure: a systematic review and meta-analysis.

BMC Cardiovasc Disord. 2024-12-20

[6]
J-Shaped Association Between Respiratory Rate and In-Hospital Mortality in Acute Myocardial Infarction Patients Complicated by Congestive Heart Failure in Intensive Care Unit.

Dose Response. 2024-12-2

[7]
A study on the methylation patterns of in patients with heart failure and its correlation with key clinical parameters.

Heliyon. 2024-9-6

[8]
Role of Artificial Intelligence and Machine Learning to Create Predictors, Enhance Molecular Understanding, and Implement Purposeful Programs for Myocardial Recovery.

Methodist Debakey Cardiovasc J. 2024

[9]
Single-cell transcriptomics reveals writers of RNA modification-mediated immune microenvironment and cardiac resident Macro-MYL2 macrophages in heart failure.

BMC Cardiovasc Disord. 2024-8-16

[10]
Drug Therapy for Acute and Chronic Heart Failure with Preserved Ejection Fraction with Hypertension: A State-of-the-Art Review.

Am J Cardiovasc Drugs. 2024-5

本文引用的文献

[1]
Behind the Scenes of TOPCAT - Bending to Inform.

NEJM Evid. 2022-1

[2]
Development and validation of a prognostic 15-gene signature for stratifying HER2+/ER+ breast cancer.

Comput Struct Biotechnol J. 2023-5-4

[3]
Effect of Sacubitril/Valsartan vs Standard Medical Therapies on Plasma NT-proBNP Concentration and Submaximal Exercise Capacity in Patients With Heart Failure and Preserved Ejection Fraction: The PARALLAX Randomized Clinical Trial.

JAMA. 2021-11-16

[4]
Proteomics-Enabled Deep Learning Machine Algorithms Can Enhance Prediction of Mortality.

J Am Coll Cardiol. 2021-10-19

[5]
Heart failure with preserved ejection fraction: a stepchild no more!

Eur Heart J. 2021-10-7

[6]
Redefining β-blocker response in heart failure patients with sinus rhythm and atrial fibrillation: a machine learning cluster analysis.

Lancet. 2021-10-16

[7]
2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.

Eur Heart J. 2021-9-21

[8]
The role of machine learning in clinical research: transforming the future of evidence generation.

Trials. 2021-8-16

[9]
Machine learning based on biomarker profiles identifies distinct subgroups of heart failure with preserved ejection fraction.

Eur J Heart Fail. 2021-6

[10]
A Systematic Review of Medical Costs Associated with Heart Failure in the USA (2014-2020).

Pharmacoeconomics. 2020-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索