Department of Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany; Leipzig Heart Institute at Heart Center Leipzig, Leipzig, Germany.
Department of Cardiology, University Hospital Leipzig and Clinic for Cardiology and Pneumology, University Medicine Göttingen, Germany; German Cardiovascular Research Center (DZHK), Partner Site Göttingen, Germany.
EBioMedicine. 2023 Oct;96:104795. doi: 10.1016/j.ebiom.2023.104795. Epub 2023 Sep 7.
BACKGROUND: Whether there is a subset of patients with heart failure with preserved ejection fraction (HFpEF) that benefit from spironolactone therapy is unclear. We applied a machine learning approach to identify responders and non-responders to spironolactone among patients with HFpEF in two large randomized clinical trials. METHODS: Using a reiterative cluster allocating permutation approach, patients from the derivation cohort (Aldo-DHF) were identified according to their treatment response to spironolactone with respect to improvement in E/e'. Heterogenous features of response ('responders' and 'non-responders') were characterized by an extreme gradient boosting (XGBoost) algorithm. XGBoost was used to predict treatment response in the validation cohort (TOPCAT). The primary endpoint of the validation cohort was a combined endpoint of cardiovascular mortality, aborted cardiac arrest, or heart failure hospitalization. Patients with missing variables for the XGboost model were excluded from the validation analysis. FINDINGS: Out of 422 patients from the derivation cohort, reiterative cluster allocating permutation identified 159 patients (38%) as spironolactone responders, in whom E/e' significantly improved (p = 0.005). Within the validation cohort (n = 525) spironolactone treatment significantly reduced the occurrence of the primary outcome among responders (n = 185, p log rank = 0.008), but not among patients in the non-responder group (n = 340, p log rank = 0.52). INTERPRETATION: Machine learning approaches might aid in identifying HFpEF patients who are likely to show a favorable therapeutic response to spironolactone. FUNDING: See Acknowledgements section at the end of the manuscript.
背景:射血分数保留的心力衰竭(HFpEF)患者中是否存在对螺内酯治疗有反应的亚组尚不清楚。我们应用机器学习方法,在两项大型随机临床试验中,确定 HFpEF 患者中螺内酯治疗的反应者和无反应者。
方法:使用反复聚类分配置换方法,根据 Aldo-DHF 研究中螺内酯治疗对 E/e'改善的反应,从推导队列中识别出患者对螺内酯的反应情况。通过极端梯度增强(XGBoost)算法对反应的异质性特征(“反应者”和“无反应者”)进行特征描述。XGBoost 用于预测验证队列(TOPCAT)的治疗反应。验证队列的主要终点是心血管死亡率、心搏骤停未遂或心力衰竭住院的复合终点。对 XGBoost 模型缺失变量的患者被排除在验证分析之外。
结果:在推导队列的 422 名患者中,反复聚类分配置换方法确定了 159 名患者(38%)为螺内酯反应者,他们的 E/e'显著改善(p=0.005)。在验证队列(n=525)中,螺内酯治疗显著降低了反应者(n=185)发生主要结局的发生率(p log rank=0.008),但在无反应者组(n=340)中没有降低(p log rank=0.52)。
解释:机器学习方法可能有助于识别 HFpEF 患者,这些患者可能对螺内酯治疗有良好的治疗反应。
资助:见文末致谢部分。
JACC Heart Fail. 2018-7-11
J Am Coll Cardiol. 2021-3-9
Curr Heart Fail Rep. 2017-8
Med Gas Res. 2025-12-1
BMC Cardiovasc Disord. 2024-12-20
NEJM Evid. 2022-1
Comput Struct Biotechnol J. 2023-5-4
J Am Coll Cardiol. 2021-10-19
Eur Heart J. 2021-10-7
Eur Heart J. 2021-9-21
Pharmacoeconomics. 2020-11