Division of Cardiology and Department of Biomedical Informatics, Columbia University Irving Medical Center, 622 West 168th Street, PH20, NewYork, NY 10032, USA.
Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, NewYork-Presbyterian Hospital, 630 West 168th Street, NewYork, NY 10032, USA.
Eur Heart J. 2024 Jun 7;45(22):2002-2012. doi: 10.1093/eurheartj/ehad782.
Early identification of cardiac structural abnormalities indicative of heart failure is crucial to improving patient outcomes. Chest X-rays (CXRs) are routinely conducted on a broad population of patients, presenting an opportunity to build scalable screening tools for structural abnormalities indicative of Stage B or worse heart failure with deep learning methods. In this study, a model was developed to identify severe left ventricular hypertrophy (SLVH) and dilated left ventricle (DLV) using CXRs.
A total of 71 589 unique CXRs from 24 689 different patients completed within 1 year of echocardiograms were identified. Labels for SLVH, DLV, and a composite label indicating the presence of either were extracted from echocardiograms. A deep learning model was developed and evaluated using area under the receiver operating characteristic curve (AUROC). Performance was additionally validated on 8003 CXRs from an external site and compared against visual assessment by 15 board-certified radiologists.
The model yielded an AUROC of 0.79 (0.76-0.81) for SLVH, 0.80 (0.77-0.84) for DLV, and 0.80 (0.78-0.83) for the composite label, with similar performance on an external data set. The model outperformed all 15 individual radiologists for predicting the composite label and achieved a sensitivity of 71% vs. 66% against the consensus vote across all radiologists at a fixed specificity of 73%.
Deep learning analysis of CXRs can accurately detect the presence of certain structural abnormalities and may be useful in early identification of patients with LV hypertrophy and dilation. As a resource to promote further innovation, 71 589 CXRs with adjoining echocardiographic labels have been made publicly available.
早期识别心力衰竭相关的心脏结构异常对于改善患者预后至关重要。胸部 X 光片(CXR)常规用于广泛的患者群体,为使用深度学习方法构建用于筛查结构性异常(心力衰竭 B 期或更严重阶段)的可扩展筛查工具提供了机会。本研究旨在使用 CXR 开发一种用于识别严重左心室肥厚(SLVH)和左心室扩张(DLV)的模型。
共从 24689 名不同患者的 71589 张 CXR 中确定了在超声心动图检查后 1 年内完成的唯一 CXR。从超声心动图中提取 SLVH、DLV 和表示存在任一种情况的复合标签的标签。开发了一种深度学习模型,并使用接受者操作特征曲线下面积(AUROC)进行评估。在来自外部站点的 8003 张 CXR 上对性能进行了额外验证,并与 15 名经董事会认证的放射科医生的视觉评估进行了比较。
该模型在 SLVH、DLV 和复合标签的 AUROC 分别为 0.79(0.76-0.81)、0.80(0.77-0.84)和 0.80(0.78-0.83),在外部数据集上具有相似的性能。该模型在预测复合标签方面优于所有 15 名放射科医生,并且在所有放射科医生的共识投票中达到了 71%的灵敏度,特异性为 73%。
CXR 的深度学习分析可以准确检测出某些结构性异常的存在,可能有助于早期识别左心室肥厚和扩张的患者。为了促进进一步的创新,我们提供了 71589 张带有相邻超声心动图标签的 CXR,供公众使用。