Suppr超能文献

一种来自蓝藻的胞外多糖可能利用CH-π键:钙螺旋藻多糖的分离、纯化及化学结构综述

An Exopolysaccharide from the Cyanobacterium May Utilize CH-π Bonding: A Review of the Isolation, Purification, and Chemical Structure of Calcium-Spirulan.

作者信息

Gal Jonathan L, Johnson Steven M

机构信息

Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, Utah 84602, United States.

出版信息

ACS Omega. 2024 Aug 10;9(33):35243-35255. doi: 10.1021/acsomega.4c05066. eCollection 2024 Aug 20.

Abstract

The CH-π bonding potential of a saccharide is determined primarily by the number of hydrogen atoms available for bonding and is reduced by side groups that interfere with the CH-π bond. Each hydrogen bond increases the total bond energy, while interfering hydroxyl groups and other side groups reduce the bond energy by repulsion. The disaccharide repeating units of Calcium-Spirulan (Ca-SP), a large exopolysaccharide sub fractionated from the supernatant of the cyanobacterium , contain a unique monosaccharide that is completely devoid of hydroxyl groups and side groups on its entire beta surface, leaving five hydrogen atoms available for CH-π bonding in the planar conformation. While planar conformations of independent pyranose rings are rare-to-nonexistent, due to ring strain associated with that conformation, the binding site of a protein could provide the conformational energy needed to overcome that energy barrier. By enabling a planar conformation, a protein could also enable the sugar to form a novel 5-hydrogen CH-π bond configuration. One study of the anticoagulant property of Ca-SP shows that the molecule acts as an activator of Heparin Cofactor II (HC-II), boosting its anticoagulant kinetics by 10. In comparison, the longstanding anticoagulant drug Heparin boosts the HC-II kinetics by 10. The difference may be explained by this unique CH-π configuration. Here, we review current knowledge and experience on the isolation techniques, analytical methods, and chemical structures of Ca-SP. We emphasize a discussion of the CH-π bonding potential of this unique polysaccharide because it is a topic that has not yet been addressed. By introducing the topic of CH-π bonding to the cyanobacterial research community, this review may help to set the stage for further investigation of these unique molecules, their genetics, their biosynthetic pathways, their chemistry, and their biological functions.

摘要

糖类的CH-π键合潜力主要由可用于键合的氢原子数量决定,并会因干扰CH-π键的侧基而降低。每个氢键都会增加总键能,而具有干扰性的羟基和其他侧基则会通过排斥作用降低键能。从蓝藻上清液中分级分离出的一种大型胞外多糖——钙螺旋藻多糖(Ca-SP)的二糖重复单元,包含一种独特的单糖,其整个β表面完全没有羟基和侧基,在平面构象中有五个氢原子可用于CH-π键合。虽然独立吡喃糖环的平面构象很少见甚至不存在,因为该构象会产生环张力,但蛋白质的结合位点可以提供克服该能量障碍所需的构象能。通过形成平面构象,蛋白质还可以使糖类形成一种新型的5-氢CH-π键构型。一项关于Ca-SP抗凝特性的研究表明,该分子可作为肝素辅因子II(HC-II)的激活剂,将其抗凝动力学提高10倍。相比之下,长期使用的抗凝药物肝素将HC-II动力学提高10倍。这种差异可能由这种独特的CH-π构型来解释。在这里,我们综述了关于Ca-SP的分离技术、分析方法和化学结构的现有知识和经验。我们着重讨论这种独特多糖的CH-π键合潜力,因为这是一个尚未涉及的主题。通过向蓝藻研究界引入CH-π键合这一主题,本综述可能有助于为进一步研究这些独特分子、它们的遗传学、生物合成途径、化学性质和生物学功能奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c68f/11339812/228068ff0b87/ao4c05066_0001.jpg

相似文献

3
Heparin cofactor II-dependent antithrombin activity of calcium spirulan.
Blood Coagul Fibrinolysis. 1996 Jul;7(5):554-60. doi: 10.1097/00001721-199607000-00007.
5
7
Electronic properties of hydrogen-bonded complexes of benzene(HCN)(1-4): comparison with benzene(H2O)(1-4).
J Phys Chem A. 2011 Nov 24;115(46):13714-23. doi: 10.1021/jp208595p. Epub 2011 Oct 21.
8
Cyclic aromatic systems with hypervalent centers.
Chem Rev. 2001 May;101(5):1247-65. doi: 10.1021/cr990358h.
9
Anticoagulant activity of a sulfated polysaccharide from the green alga Arthrospira platensis.
Biochim Biophys Acta. 2009 Oct;1790(10):1377-81. doi: 10.1016/j.bbagen.2009.07.013. Epub 2009 Jul 23.
10
CH-π hydrogen bonds in biological macromolecules.
Phys Chem Chem Phys. 2014 Jul 7;16(25):12648-83. doi: 10.1039/c4cp00099d.

引用本文的文献

1
Prospects of Gels for Food Applications from Marine Sources: Exploring Microalgae.
Gels. 2025 Jul 23;11(8):569. doi: 10.3390/gels11080569.

本文引用的文献

1
PubChem 2023 update.
Nucleic Acids Res. 2023 Jan 6;51(D1):D1373-D1380. doi: 10.1093/nar/gkac956.
3
Database resources of the national center for biotechnology information.
Nucleic Acids Res. 2022 Jan 7;50(D1):D20-D26. doi: 10.1093/nar/gkab1112.
4
The carbohydrate-active enzyme database: functions and literature.
Nucleic Acids Res. 2022 Jan 7;50(D1):D571-D577. doi: 10.1093/nar/gkab1045.
5
Horizontal gene transfer and adaptive evolution in bacteria.
Nat Rev Microbiol. 2022 Apr;20(4):206-218. doi: 10.1038/s41579-021-00650-4. Epub 2021 Nov 12.
6
CH-π Interactions in Glycan Recognition.
ACS Chem Biol. 2021 Oct 15;16(10):1884-1893. doi: 10.1021/acschembio.1c00413. Epub 2021 Oct 6.
7
Advances in production of bioplastics by microalgae using food waste hydrolysate and wastewater: A review.
Bioresour Technol. 2021 Dec;342:125947. doi: 10.1016/j.biortech.2021.125947. Epub 2021 Sep 17.
8
Examining horizontal gene transfer in microbial communities.
Nat Rev Microbiol. 2021 Jul;19(7):442-453. doi: 10.1038/s41579-021-00534-7. Epub 2021 Apr 12.
9
Antiviral Cyanometabolites-A Review.
Biomolecules. 2021 Mar 22;11(3):474. doi: 10.3390/biom11030474.
10
Wastewater treatment using filamentous algae - A review.
Bioresour Technol. 2020 Feb;298:122556. doi: 10.1016/j.biortech.2019.122556. Epub 2019 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验