文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Fluorescence control of chitin and chitosan fabricated surface functionalization using direct oxidative polymerization.

作者信息

Phung Hai Thien An, Sugimoto Ryuichi

机构信息

School of Environmental Science and Engineering, Kochi University of Technology Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan

出版信息

RSC Adv. 2018 Feb 13;8(13):7005-7013. doi: 10.1039/c8ra00287h. eCollection 2018 Feb 9.


DOI:10.1039/c8ra00287h
PMID:35540309
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9078334/
Abstract

The copolymer of 3-hexylthiophene (3HT) and fluorene (F) was directly grafted onto chitin and chitosan using FeCl as an oxidant. The properties of the grafted chitin/chitosan were characterized by Fourier transform infrared (FT-IR) spectroscopy, UV-Vis spectroscopy, fluorescence spectroscopy, X-ray diffraction analysis, thermogravimetric analysis (TGA), transmission electron microscopy-energy dispersive X-ray spectroscopy, and quantum yield measurements. The UV-Vis absorption peaks of the chitin/chitosan grafted with 3-hexylthiophene and fluorene copolymer were increasingly blue-shifted upon increasing the fluorene content and the red-shifted emission of the grafted chitin/chitosan were controlled by varying the monomers feed of the 3HT/F units. The hypsochromic and bathochromic shifts of chitin/chitosan were ascribed to the (3HT/F) moieties grafted to their surface. The quantum yield of grafted chitin/chitosan increased upon increasing the fluorene content. The TGA and XRD analysis revealed that the thermal stability and crystallinity of chitin/chitosan decreased upon grafting the copolymer of fluorene and 3-hexylthiophene. This article represents a simple route towards the surface modification of chitin and chitosan using conducting copolymers, providing multicolor chitin and chitosan a one-step reaction.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/9078334/6cc348ffe864/c8ra00287h-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/9078334/f9ef00e8b936/c8ra00287h-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/9078334/c56a3549b2c0/c8ra00287h-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/9078334/be8caea9c9ac/c8ra00287h-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/9078334/6054eda5bf94/c8ra00287h-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/9078334/fcae41dff886/c8ra00287h-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/9078334/b1d71cc94fe5/c8ra00287h-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/9078334/edfd41663a13/c8ra00287h-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/9078334/6cc348ffe864/c8ra00287h-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/9078334/f9ef00e8b936/c8ra00287h-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/9078334/c56a3549b2c0/c8ra00287h-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/9078334/be8caea9c9ac/c8ra00287h-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/9078334/6054eda5bf94/c8ra00287h-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/9078334/fcae41dff886/c8ra00287h-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/9078334/b1d71cc94fe5/c8ra00287h-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/9078334/edfd41663a13/c8ra00287h-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cf1/9078334/6cc348ffe864/c8ra00287h-f8.jpg

相似文献

[1]
Fluorescence control of chitin and chitosan fabricated surface functionalization using direct oxidative polymerization.

RSC Adv. 2018-2-13

[2]
Photoluminescence Control of Cellulose via Surface Functionalization Using Oxidative Polymerization.

Biomacromolecules. 2017-10-23

[3]
Extraction and physicochemical characterization of chitin and chitosan from Zophobas morio larvae in varying sodium hydroxide concentration.

Int J Biol Macromol. 2017-11-22

[4]
Geraniol grafted chitosan oligosaccharide as a potential antibacterial agent.

Carbohydr Polym. 2017-7-19

[5]
Synthesis, characterization and thermal properties of chitin-g-poly(epsilon-caprolactone) copolymers by using chitin gel.

Int J Biol Macromol. 2008-7-1

[6]
Graft polymerization of acrylic acid onto chitin nanofiber to improve dispersibility in basic water.

Carbohydr Polym. 2012-5-30

[7]
Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.

J Vis Exp. 2019-4-30

[8]
Synthesis and characterization of a brush-like copolymer of polylactide grafted onto chitosan.

Carbohydr Res. 2004-3-15

[9]
Preparation and analysis of photochromic behavior of carboxymethyl chitin derivatives containing spiropyran moieties.

Des Monomers Polym. 2020-7-26

[10]
Preparation, characterization and antioxidant activity of phenolic acids grafted carboxymethyl chitosan.

Int J Biol Macromol. 2013-11

引用本文的文献

[1]
In vitro evaluation of the enhancement of glass ionomer cement features by using chitosan and nanodiamond.

Braz Dent J. 2025-4-14

[2]
Nanocellulose@gallic Acid-Based MOFs: A Novel Material for Ecofriendly Food Packaging.

ACS Omega. 2024-7-27

[3]
Ionic Liquids as Tools to Incorporate Pharmaceutical Ingredients into Biopolymer-Based Drug Delivery Systems.

Pharmaceuticals (Basel). 2023-2-11

[4]
Exploring the biomedical competency of gamma-radiation aided hydroxyapatite and its composite fabricated with nano-cellulose and chitosan.

RSC Adv. 2023-3-27

[5]
A Top-Down Procedure for Synthesizing Calcium Carbonate-Enriched Chitosan from Shrimp Shell Wastes.

Gels. 2022-11-15

[6]
A Comparative Density Functional Theory Study of Hydrogen Storage in Cellulose and Chitosan Functionalized by Transition Metals (Ti, Mg, and Nb).

Materials (Basel). 2022-10-28

[7]
Autofluorescent Biomolecules in Diptera: From Structure to Metabolism and Behavior.

Molecules. 2022-7-12

[8]
Thermal Stability of Fluorescent Chitosan Modified with Heterocyclic Aromatic Dyes.

Materials (Basel). 2022-5-20

[9]
Robust and Highly Stretchable Chitosan Nanofiber/Alumina-Coated Silica/Carboxylated Poly (Vinyl Alcohol)/Borax Composite Hydrogels Constructed by Multiple Crosslinking.

Gels. 2021-12-22

[10]
Chitosan as a Protective Matrix for the Squaraine Dye.

Materials (Basel). 2021-3-2

本文引用的文献

[1]
Surface functionalization of cellulose with poly(3-hexylthiophene) via novel oxidative polymerization.

Carbohydr Polym. 2017-9-22

[2]
Photoluminescence Control of Cellulose via Surface Functionalization Using Oxidative Polymerization.

Biomacromolecules. 2017-10-23

[3]
Self-Assembled Conjugated Polymer/Chitosan-graft-Oleic Acid Micelles for Fast Visible Detection of Aliphatic Biogenic Amines by "Turn-On" FRET.

ACS Appl Mater Interfaces. 2017-6-29

[4]
Sensitive Conjugated-Polymer-Based Fluorescent ATP Probes and Their Application in Cell Imaging.

ACS Appl Mater Interfaces. 2015-9-22

[5]
Multicolor fluorescent labeling of cellulose nanofibrils by click chemistry.

Biomacromolecules. 2015-4-13

[6]
Hybrid molecular brushes with chitosan backbone: facile synthesis and surface grafting.

ACS Appl Mater Interfaces. 2014-12-11

[7]
Hydrophobic modification on surface of chitin sponges for highly effective separation of oil.

ACS Appl Mater Interfaces. 2014-11-7

[8]
Graft polymerization of acrylic acid onto chitin nanofiber to improve dispersibility in basic water.

Carbohydr Polym. 2012-5-30

[9]
Glycan-functionalized fluorescent chitin nanocrystals for biorecognition applications.

Bioconjug Chem. 2014-4-16

[10]
"Green" electronics: biodegradable and biocompatible materials and devices for sustainable future.

Chem Soc Rev. 2014-1-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索