Hébert-Dufresne Laurent, Kling Matthew M, Rosenblatt Samuel F, Miller Stephanie N, Burnham P Alexander, Landry Nicholas W, Gotelli Nicholas J, McGill Brian J
ArXiv. 2024 Aug 14:arXiv:2408.07755v1.
Stochastic diffusion is the noisy and uncertain process through which dynamics like epidemics, or agents like animal species, disperse over a larger area. Understanding these processes is becoming increasingly important as we attempt to better prepare for potential pandemics and as species ranges shift in response to climate change. Unfortunately, modeling of stochastic diffusion is mostly done through inaccurate deterministic tools that fail to capture the random nature of dispersal or else through expensive computational simulations. In particular, standard tools fail to fully capture the heterogeneity of the area over which this diffusion occurs. Rural areas with low population density require different epidemic models than urban areas; likewise, the edges of a species range require us to explicitly track low integer numbers of individuals rather than vague averages. In this work, we introduce a series of new tools called "mean-FLAME" models that track stochastic dispersion using approximate master equations that explicitly follow the probability distribution of an area of interest over all of its possible states, up to states that are active enough to be approximated using a mean-field model. In one limit, this approach is locally exact if we explicitly track enough states, and in the other limit collapses back to traditional deterministic models if we track no state explicitly. Applying this approach, we show how deterministic tools fail to capture the uncertainty around the speed of nonlinear dynamical processes. This is especially true for marginal areas that are close to unsuitable for diffusion, like the edge of a species range or epidemics in small populations. Capturing the uncertainty in such areas is key to producing accurate forecasts and guiding potential interventions.
随机扩散是一种噪声大且不确定的过程,通过这个过程,诸如流行病等动态现象或诸如动物物种等主体在更大的区域内扩散。随着我们试图更好地为潜在的大流行做准备,以及随着物种分布范围因气候变化而发生变化,理解这些过程变得越来越重要。不幸的是,随机扩散的建模大多通过不准确的确定性工具来完成,这些工具无法捕捉扩散的随机性质,或者通过昂贵的计算模拟来完成。特别是,标准工具未能充分捕捉发生这种扩散的区域的异质性。人口密度低的农村地区需要与城市地区不同的流行病模型;同样,物种分布范围的边缘要求我们明确跟踪少量个体的整数数量,而不是模糊的平均值。在这项工作中,我们引入了一系列名为“平均 - FLAME”模型的新工具,这些工具使用近似主方程来跟踪随机扩散,该方程明确遵循感兴趣区域在其所有可能状态下的概率分布,直至活跃到足以使用平均场模型进行近似的状态。在一种极限情况下,如果我们明确跟踪足够多的状态,这种方法在局部是精确的;而在另一种极限情况下,如果我们不明确跟踪任何状态,它就会退回到传统的确定性模型。应用这种方法,我们展示了确定性工具如何无法捕捉非线性动态过程速度周围的不确定性。对于接近不适合扩散的边缘区域,如物种分布范围的边缘或小种群中的流行病,情况尤其如此。捕捉这些区域的不确定性是做出准确预测和指导潜在干预措施的关键。