Suppr超能文献

仅使用从光电容积脉搏波图中提取的稳健光谱-时间特征对呼吸频率和血压进行连续的、与患者无关的估计。

Continuous Patient-Independent Estimation of Respiratory Rate and Blood Pressure Using Robust Spectro-Temporal Features Derived From Photoplethysmogram Only.

作者信息

Sultan Muhammad Ahmad, Saadeh Wala

机构信息

Electrical Engineering DepartmentLahore University of Management Sciences (LUMS) Lahore 54792 Pakistan.

The Engineering and Design DepartmentWestern Washington University (WWU) Bellingham WA 98225 USA.

出版信息

IEEE Open J Eng Med Biol. 2023 Nov 2;5:637-649. doi: 10.1109/OJEMB.2023.3329728. eCollection 2024.

Abstract

A patient-independent approach for continuous estimation of vital signs using robust spectro-temporal features derived from only photoplethysmogram (PPG) signal. In the pre-processing stage, we remove baseline shifts and artifacts of the PPG signal using Incremental Merge Segmentation with adaptive thresholding. From the cleaned PPG, we extract multiple parameters independent of individual patient PPG morphology for both Respiration Rate (RR) and Blood Pressure (BP). In addition, we derived a set of novel spectral and statistical features strongly correlated to BP. We proposed robust correlation-based feature selection methods for accurate RR estimates. For fewer computations and accurate measurements of BP, the most significant features are selected using correlation and mutual information measures in the feature engineering part. Finally, RR and BP are estimated using breath counting and a neural network regression model, respectively. The proposed approach outperforms the current state-of-the-art in both RR and BP. The RR algorithm results in mean absolute errors (median, 25th-75th percentiles) of 0.4 (0.1-0.7) for CapnoBase dataset and 0.5(0.3-2.8) for BIDMC dataset without discarding any data window. Similarly, BP approach has been validated on a large dataset derived from MIMIC-II ([Formula: see text]1700 records) which has errors (mean absolute, standard deviation) of 5.0(6.3) and 3.0(4.0) for systolic and diastolic BP, respectively. The results meet the American Association for the Advancement of Medical Instrumentation (AAMI) and British Hypertension Society (BHS) Class A criteria. By using robust features and feature selection methods, we alleviated patient dependency to have reliable estimates of vitals.

摘要

一种基于患者无关的方法,利用仅从光电容积脉搏波描记图(PPG)信号中提取的稳健光谱 - 时间特征来连续估计生命体征。在预处理阶段,我们使用具有自适应阈值的增量合并分割来去除PPG信号的基线漂移和伪影。从清理后的PPG中,我们提取了多个与个体患者PPG形态无关的参数,用于呼吸率(RR)和血压(BP)的估计。此外,我们还推导了一组与血压密切相关的新颖光谱和统计特征。我们提出了基于稳健相关性的特征选择方法来准确估计RR。为了减少计算量并准确测量血压,在特征工程部分使用相关性和互信息度量来选择最显著的特征。最后,分别使用呼吸计数和神经网络回归模型来估计RR和BP。所提出的方法在RR和BP估计方面均优于当前的最先进方法。对于CapnoBase数据集,RR算法在不丢弃任何数据窗口的情况下,平均绝对误差(中位数,第25 - 75百分位数)为0.4(0.1 - 0.7);对于BIDMC数据集,平均绝对误差为0.5(0.3 - 2.8)。同样,BP方法在从MIMIC - II派生的大型数据集(>1700条记录)上得到了验证,收缩压和舒张压的误差(平均绝对误差,标准差)分别为5.0(6.3)和3.0(4.0)。结果符合美国医学仪器促进协会(AAMI)和英国高血压学会(BHS)的A类标准。通过使用稳健的特征和特征选择方法,我们减少了对患者的依赖,从而能够可靠地估计生命体征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d30d/11342923/7876d09f7108/saade1-3329728.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验