Suppr超能文献

基因表达与脑成像关联研究揭示了重度抑郁症中的基因特征。

Gene expression and brain imaging association study reveals gene signatures in major depressive disorder.

作者信息

Liu Wei, Su Jian-Po, Zeng Ling-Li, Shen Hui, Hu De-Wen

机构信息

College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, P.R. China.

出版信息

Brain Commun. 2024 Aug 13;6(4):fcae258. doi: 10.1093/braincomms/fcae258. eCollection 2024.

Abstract

Major depressive disorder is often characterized by changes in the structure and function of the brain, which are influenced by modifications in gene expression profiles. How the depression-related genes work together within the scope of time and space to cause pathological changes remains unclear. By integrating the brain-wide gene expression data and imaging data in major depressive disorder, we identified gene signatures of major depressive disorder and explored their temporal-spatial expression specificity, network properties, function annotations and sex differences systematically. Based on correlation analysis with permutation testing, we found 345 depression-related genes significantly correlated with functional and structural alteration of brain images in major depressive disorder and separated them by directional effects. The genes with negative effect for grey matter density and positive effect for functional indices are enriched in downregulated genes in the post-mortem brain samples of patients with depression and risk genes identified by genome-wide association studies than genes with positive effect for grey matter density and negative effect for functional indices and control genes, confirming their potential association with major depressive disorder. By introducing a parameter of dispersion measure on the gene expression data of developing human brains, we revealed higher spatial specificity and lower temporal specificity of depression-related genes than control genes. Meanwhile, we found depression-related genes tend to be more highly expressed in females than males, which may contribute to the difference in incidence rate between male and female patients. In general, we found the genes with negative effect have lower network degree, more specialized function, higher spatial specificity, lower temporal specificity and more sex differences than genes with positive effect, indicating they may play different roles in the occurrence and development of major depressive disorder. These findings can enhance the understanding of molecular mechanisms underlying major depressive disorder and help develop tailored diagnostic and treatment strategies for patients of depression of different sex.

摘要

重度抑郁症通常以大脑结构和功能的变化为特征,这些变化受基因表达谱改变的影响。与抑郁症相关的基因如何在时间和空间范围内共同作用导致病理变化仍不清楚。通过整合重度抑郁症患者全脑基因表达数据和成像数据,我们识别出了重度抑郁症的基因特征,并系统地探索了它们的时空表达特异性、网络特性、功能注释和性别差异。基于置换检验的相关性分析,我们发现345个与抑郁症相关的基因与重度抑郁症患者脑图像的功能和结构改变显著相关,并按方向效应将它们分开。与灰质密度呈负效应且对功能指标呈正效应的基因,在抑郁症患者死后脑样本中的下调基因以及全基因组关联研究确定的风险基因中比与灰质密度呈正效应且对功能指标呈负效应的基因和对照基因更富集,证实了它们与重度抑郁症的潜在关联。通过在发育中的人类大脑基因表达数据上引入离散度测量参数,我们发现与抑郁症相关的基因比对照基因具有更高的空间特异性和更低的时间特异性。同时,我们发现与抑郁症相关的基因在女性中往往比男性表达更高,这可能导致男女患者发病率的差异。总体而言,我们发现与呈正效应的基因相比,呈负效应的基因具有更低的网络度、更专门的功能、更高的空间特异性、更低的时间特异性和更多的性别差异,表明它们可能在重度抑郁症的发生和发展中发挥不同作用。这些发现可以增强对重度抑郁症潜在分子机制的理解,并有助于为不同性别的抑郁症患者制定量身定制的诊断和治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1255/11342243/8cb7925fcc46/fcae258_ga.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验