Suppr超能文献

具有伪酞菁配位环境的双原子铁用于超过150000次循环的高效氧还原

Diatomic Iron with a Pseudo-Phthalocyanine Coordination Environment for Highly Efficient Oxygen Reduction over 150,000 Cycles.

作者信息

Huang Zechuan, Li Mianfeng, Yang Xinyi, Zhang Tao, Wang Xin, Song Wanqing, Zhang Jinfeng, Wang Haozhi, Chen Yanan, Ding Jia, Hu Wenbin

机构信息

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China.

School of Materials Science and Engineering, Hainan University, Haikou 570228, China.

出版信息

J Am Chem Soc. 2024 Sep 11;146(36):24842-24854. doi: 10.1021/jacs.4c05111. Epub 2024 Aug 26.

Abstract

Atomically dispersed Fe-N-C catalysts emerged as promising alternatives to commercial Pt/C for the oxygen reduction reaction. However, the majority of Fe-N-C catalysts showed unsatisfactory activity and durability due to their inferior O-O bond-breaking capability and rapid Fe demetallization. Herein, we create a pseudo-phthalocyanine environment coordinated diatomic iron (Fe-pPc) catalyst by grafting the core domain of iron phthalocyanine (Fe-N-C-N) onto defective carbon. characterizations and theoretical calculation confirm that Fe-pPc follows the fast-kinetic dissociative pathway, whereby Fe-pPc triggers bridge-mode oxygen adsorption and catalyzes direct O-O radical cleavage. Compared to traditional Fe-N-C and FePc-based catalysts exhibiting superoxo-like oxygen adsorption and an *OOH-involved pathway, Fe-pPc delivers a superior half-wave potential of 0.92 V. Furthermore, the ultrastrong N-C bonds in the pPc environment endow the diatomic iron active center with high tolerance for reaction-induced geometric stress, leading to significantly promoted resistance to demetallization. Upon an unprecedented harsh accelerated degradation test of 150,000 cycles, Fe-pPc experiences negligible Fe loss and an extremely small activity decay of 17 mV, being the most robust candidate among previously reported Fe-N-C catalysts. Zinc-air batteries employing Fe-pPc exhibit a power density of 255 mW cm and excellent operation stability beyond 440 h. This work brings new insights into the design of atomically precise metallic catalysts.

摘要

原子分散的Fe-N-C催化剂成为有望替代商业Pt/C用于氧还原反应的材料。然而,大多数Fe-N-C催化剂由于其较差的O-O键断裂能力和快速的铁脱金属作用,表现出不尽人意的活性和耐久性。在此,我们通过将铁酞菁(Fe-N-C-N)的核心域接枝到有缺陷的碳上,制备了一种伪酞菁环境配位双原子铁(Fe-pPc)催化剂。表征和理论计算证实,Fe-pPc遵循快速动力学解离途径,即Fe-pPc引发桥式氧吸附并催化直接的O-O自由基裂解。与表现出超氧类似物氧吸附和涉及*OOH途径的传统Fe-N-C和基于FePc的催化剂相比,Fe-pPc具有0.92 V的优异半波电位。此外,pPc环境中极强的N-C键赋予双原子铁活性中心对反应诱导的几何应力的高耐受性,从而显著提高了抗脱金属能力。在前所未有的150,000次循环的苛刻加速降解测试中,Fe-pPc的铁损失可忽略不计,活性衰减极小,仅为17 mV,是先前报道的Fe-N-C催化剂中最稳定的候选者。采用Fe-pPc的锌空气电池表现出255 mW cm的功率密度和超过440 h的优异运行稳定性。这项工作为原子精确金属催化剂的设计带来了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验