Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging (BCAN), Berlin, Germany.
Bernstein Center for Computational Neuroscience, Berlin, Germany.
Ann Clin Transl Neurol. 2024 Oct;11(10):2597-2608. doi: 10.1002/acn3.52173. Epub 2024 Aug 26.
Locomotion is an automated voluntary movement sustained by coordinated neural synchronization across a distributed brain network. The cerebral cortex is central for adapting the locomotion pattern to the environment and alterations of cortical network dynamics can lead to gait impairments. Gait problems are a common symptom with a still unclear pathophysiology and represent an unmet therapeutical need in Parkinson's disease. Little is known about the cortical network dynamics of locomotor control in these patients.
We studied the cortical basis of parkinsonian gait by combining metabolic brain imaging with high-density EEG recordings and kinematic measurements performed at rest and during unperturbed overground walking.
We found significant changes in functional connectivity between frontal, sensorimotor, and visuomotor cortical areas during walking as compared to resting. Specifically, hypokinetic gait was associated with poor information flow from the supplementary motor area (SMA) to precuneus and from calcarine to lingual gyrus, as well as high information flow from calcarine to cuneus.
Our findings support a role for visuomotor integration processes in PD-related hypokinetic gait and suggest that reinforcing visual information may act as a compensatory strategy to allow SMA-mediated feedforward locomotor control in PD.
运动是一种由分布式大脑网络协调神经同步维持的自动自主运动。大脑皮层对于适应运动模式到环境以及皮层网络动力学的改变至关重要,而这些改变可能导致步态障碍。步态问题是帕金森病的一种常见症状,其病理生理学仍不清楚,这代表着该疾病在治疗上的需求未得到满足。对于这些患者的运动控制的皮层网络动力学,我们知之甚少。
我们通过将代谢性脑成像与高密度 EEG 记录和在休息和不受干扰的地面行走期间进行的运动学测量相结合,研究了帕金森步态的皮层基础。
与休息相比,我们发现行走时额叶、感觉运动和视运动皮层区域之间的功能连接发生了显著变化。具体而言,运动减少与从补充运动区(SMA)到楔前叶以及从舌回到距状回的信息流动不良有关,而距状回到楔叶的信息流动较高。
我们的发现支持视运动整合过程在帕金森病相关运动减少中的作用,并表明增强视觉信息可能是一种补偿策略,可允许 SMA 介导的帕金森病中的前馈运动控制。