Suppr超能文献

基于深度学习的 CT 图像脊柱骨折检测方法

An Innovative Deep Learning Approach to Spinal Fracture Detection in CT Images.

机构信息

Department of Spinal Surgery, Ningbo No.2 Hospital, 315010 Ningbo, Zhejiang, China.

Department of Orthopaedics, Ningbo No.2 Hospital, 315010 Ningbo, Zhejiang, China.

出版信息

Ann Ital Chir. 2024;95(4):657-668. doi: 10.62713/aic.3498.

Abstract

AIM

Spinal fractures, particularly vertebral compression fractures, pose a significant challenge in medical imaging due to their small-scale nature and blurred boundaries in Computed Tomography (CT) scans. However, advanced deep learning models, such as the integration of the You Only Look Once (YOLO) V7 model with Efficient Layer Aggregation Networks (ELAN) and Max-Pooling Convolution (MPConv) architectures, can substantially reduce the loss of small-scale information during computational processing, thus improving detection accuracy. The purpose of this study is to develop an innovative deep learning approach for detecting spinal fractures, particularly vertebral compression fractures, in CT images.

METHODS

We proposed a novel method to precisely identify spinal injury using the YOLO V7 model as a classifier. This model was enhanced by integrating ELAN and MPConv architectures, which were influenced by the Receptive Field Learning and Aggregation (RFLA) small object recognition framework. Standard normalization techniques were utilized to preprocess the CT images. The YOLO V7 model, integrated with ELAN and MPConv architectures, was trained using a dataset containing annotated spinal fractures. Additionally, to mitigate boundary ambiguities in compressive fractures, a Theoretical Receptive Field (TRF) based on Gaussian distribution and an Effective Receptive Field (ERF) were used to capture multi-scale features better. Furthermore, the Wasserstein distance was employed to optimize the model's learning process. A total of 240 CT images from patients diagnosed with spinal fractures were included in this study, sourced from Ningbo No.2 Hospital, ensuring a robust dataset for training the deep learning model.

RESULTS

Our method demonstrated superior performance over conventional object detection networks like YOLO V7 and YOLO V3. Specifically, with a dataset of 200 pathological images and 40 normal spinal images, our method achieved a 3% increase in accuracy compared to YOLO V7.

CONCLUSIONS

The proposed method offers an innovative and more effective approach for identifying vertebral compression fractures in CT scans. These promising findings suggest the method's potential for practical clinical applications, highlighting the significance of deep learning in enhancing patient care and treatment in medical imaging. Future research should incorporate cross-validation and independent validation and test sets to assess the model's robustness and generalizability. Additionally, exploring other deep learning models and methods could further enhance detection accuracy and reliability, contributing to the development of more effective diagnostic tools in medical imaging.

摘要

目的

脊柱骨折,特别是椎体压缩性骨折,在医学影像学中是一个重大挑战,因为它们在计算机断层扫描(CT)扫描中具有小尺度和模糊边界的特点。然而,先进的深度学习模型,如将 You Only Look Once(YOLO)V7 模型与高效层聚合网络(ELAN)和最大池化卷积(MPConv)架构集成,可以在计算处理过程中大大减少小尺度信息的损失,从而提高检测准确性。本研究旨在开发一种创新的深度学习方法,用于检测 CT 图像中的脊柱骨折,特别是椎体压缩性骨折。

方法

我们提出了一种使用 YOLO V7 模型作为分类器精确识别脊柱损伤的新方法。该模型通过集成 ELAN 和 MPConv 架构得到增强,这些架构受到了 Receptive Field Learning and Aggregation(RFLA)小物体识别框架的影响。使用标准归一化技术对 CT 图像进行预处理。YOLO V7 模型与 ELAN 和 MPConv 架构集成,使用包含标注脊柱骨折的数据集进行训练。此外,为了减轻压缩性骨折的边界模糊问题,基于高斯分布的理论接收域(TRF)和有效接收域(ERF)用于更好地捕获多尺度特征。此外,使用 Wasserstein 距离来优化模型的学习过程。这项研究共纳入了 240 例来自宁波第二医院的经诊断患有脊柱骨折的患者的 CT 图像,为训练深度学习模型提供了一个强大的数据集。

结果

我们的方法在传统的目标检测网络,如 YOLO V7 和 YOLO V3 上表现出了优异的性能。具体来说,在一个包含 200 个病理图像和 40 个正常脊柱图像的数据集上,我们的方法比 YOLO V7 提高了 3%的准确率。

结论

所提出的方法为 CT 扫描中识别椎体压缩性骨折提供了一种创新和更有效的方法。这些有前景的发现表明,该方法在增强医学影像中的患者护理和治疗方面具有潜在的应用价值,突出了深度学习在提高医学影像诊断工具效果和可靠性方面的重要性。未来的研究应纳入交叉验证和独立验证测试集,以评估模型的稳健性和通用性。此外,探索其他深度学习模型和方法可以进一步提高检测准确性和可靠性,有助于开发更有效的医学影像诊断工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验