School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Sensors (Basel). 2024 Sep 24;24(19):6168. doi: 10.3390/s24196168.
As deep learning technology has progressed, automated medical image analysis is becoming ever more crucial in clinical diagnosis. However, due to the diversity and complexity of blood cell images, traditional models still exhibit deficiencies in blood cell detection. To address blood cell detection, we developed the TW-YOLO approach, leveraging multi-scale feature fusion techniques. Firstly, traditional CNN (Convolutional Neural Network) convolution has poor recognition capabilities for certain blood cell features, so the RFAConv (Receptive Field Attention Convolution) module was incorporated into the backbone of the model to enhance its capacity to extract geometric characteristics from blood cells. At the same time, utilizing the feature pyramid architecture of YOLO (You Only Look Once), we enhanced the fusion of features at different scales by incorporating the CBAM (Convolutional Block Attention Module) in the detection head and the EMA (Efficient Multi-Scale Attention) module in the neck, thereby improving the recognition ability of blood cells. Additionally, to meet the specific needs of blood cell detection, we designed the PGI-Ghost (Programmable Gradient Information-Ghost) strategy to finely describe the gradient flow throughout the process of extracting features, further improving the model's effectiveness. Experiments on blood cell detection datasets such as BloodCell-Detection-Dataset (BCD) reveal that TW-YOLO outperforms other models by 2%, demonstrating excellent performance in the task of blood cell detection. In addition to advancing blood cell image analysis research, this work offers strong technical support for future automated medical diagnostics.
随着深度学习技术的不断进步,自动化医学图像分析在临床诊断中变得越来越重要。然而,由于血细胞图像的多样性和复杂性,传统模型在血细胞检测方面仍然存在不足。为了解决血细胞检测问题,我们开发了 TW-YOLO 方法,利用多尺度特征融合技术。首先,传统的卷积神经网络(CNN)卷积对某些血细胞特征的识别能力较差,因此我们在模型的骨干中引入了 RFAConv(感受野注意力卷积)模块,以增强其从血细胞中提取几何特征的能力。同时,利用 YOLO(只看一次)的特征金字塔架构,我们通过在检测头中引入 CBAM(卷积块注意力模块)和在颈部中引入 EMA(高效多尺度注意力)模块,增强了不同尺度特征的融合,从而提高了血细胞的识别能力。此外,为了满足血细胞检测的特定需求,我们设计了 PGI-Ghost(可编程梯度信息-幽灵)策略,以精细描述在提取特征过程中的梯度流,进一步提高了模型的效果。在 BloodCell-Detection-Dataset(BCD)等血细胞检测数据集上的实验表明,TW-YOLO 比其他模型提高了 2%,在血细胞检测任务中表现出了优异的性能。除了推进血细胞图像分析研究外,这项工作还为未来的自动化医疗诊断提供了强有力的技术支持。