Suppr超能文献

微流控石英晶体微天平实现超高品质因数:液体中重量传感的新范式。

Microfluidic QCM enables ultrahigh Q-factor: a new paradigm for in-liquid gravimetric sensing.

作者信息

Zhao Yicheng, Parlak Zehra, Yu Wenjun, French Daniel, Aquino Wilkins, Zauscher Stefan

机构信息

Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.

Qatch Technologies, LLC., Durham, NC, USA.

出版信息

Microsyst Nanoeng. 2024 Aug 26;10(1):116. doi: 10.1038/s41378-024-00732-2.

Abstract

Acoustic gravimetric biosensors attract attention due to their simplicity, robustness, and low cost. However, a prevailing challenge in these sensors is dissipation which manifests in a low quality factor (Q-factor), which limits their sensitivity and accuracy. To mitigate dissipation of acoustic sensors in liquid environments we introduce an innovative approach in which we combine microfluidic channels with gravimetric sensors. To implement this novel paradigm we chose the quartz crystal microbalance (QCM) as our model system, owing to its wide applicability in biosensing and the relevance of its operating principles to other types of acoustic sensors. We postulate that the crucial determinant for enhancing performance lies in the ratio between the width of the microfluidic channels and the wavelength of the pressure wave generated by the oscillating channel side walls driven by the QCM. Our hypothesis is supported by finite element analysis (FEA) and dimensional studies, which revealed two key factors that affect device performance: (1) the ratio of the channel width to the pressure wavelength ( ) and (2) the ratio of the channel height to the shear evanescent wavelength ( ). To validate our hypothesis, we fabricated a microfluidic QCM (µ-QCM) and demonstrated a remarkable 10-fold improvement in its dissipation when compared to conventional QCM. The novel microfluidic approach offers several additional advantages, such as direct data interpretation, reduced volume requirement for sample liquids, and simplified temperature control, augmenting the sensor's overall performance. By fostering increased sensitivity, accuracy, and ease of operation, our novel paradigm unlocks new possibilities for advancing gravimetric technologies, potentially for biosensing applications.

摘要

声学重量生物传感器因其简单性、稳健性和低成本而备受关注。然而,这些传感器面临的一个普遍挑战是耗散,这表现为低品质因数(Q 因子),限制了它们的灵敏度和准确性。为了减轻液体环境中声学传感器的耗散,我们引入了一种创新方法,即将微流体通道与重量传感器相结合。为了实现这一新范式,我们选择石英晶体微天平(QCM)作为我们的模型系统,这是由于其在生物传感中的广泛适用性以及其工作原理与其他类型声学传感器的相关性。我们推测,提高性能的关键决定因素在于微流体通道的宽度与由 QCM 驱动的振荡通道侧壁产生的压力波波长之间的比率。我们的假设得到了有限元分析(FEA)和尺寸研究的支持,这些研究揭示了影响器件性能的两个关键因素:(1)通道宽度与压力波长的比率( )和(2)通道高度与剪切倏逝波长的比率( )。为了验证我们的假设,我们制造了一种微流体 QCM(µ-QCM),并证明与传统 QCM 相比,其耗散显著提高了 10 倍。这种新颖的微流体方法还具有其他几个优点,例如直接数据解读、减少样品液体的体积要求以及简化温度控制,从而提高了传感器的整体性能。通过提高灵敏度、准确性和操作便利性,可以为推进重量技术,特别是生物传感应用,开辟新的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f614/11347674/65423282bc5b/41378_2024_732_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验