School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City, 44919, Republic of Korea.
Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
Nat Commun. 2023 Jan 23;14(1):359. doi: 10.1038/s41467-023-36039-5.
Ion channels transduce external stimuli into ion-transport-mediated signaling, which has received considerable attention in diverse fields such as sensors, energy harvesting devices, and desalination membrane. In this work, we present a photosensitive ion channel based on plasmonic gold nanostars (AuNSs) and cellulose nanofibers (CNFs) embedded in layered MXene nanosheets. The MXene/AuNS/CNF (MAC) membrane provides subnanometer-sized ionic pathways for light-sensitive cationic flow. When the MAC nanochannel is exposed to NIR light, a photothermal gradient is formed, which induces directional photothermo-osmotic flow of nanoconfined electrolyte against the thermal gradient and produces a net ionic current. MAC membrane exhibits enhanced photothermal current compared with pristine MXene, which is attributed to the combined photothermal effects of plasmonic AuNSs and MXene and the widened interspacing of the MAC composite via the hydrophilic nanofibrils. The MAC composite membranes are envisioned to be applied in flexible ionic channels with ionogels and light-controlled ionic circuits.
离子通道将外部刺激转化为离子传输介导的信号转导,这在传感器、能量收集装置和脱盐膜等多个领域引起了相当大的关注。在这项工作中,我们提出了一种基于等离子体金纳米星(AuNSs)和嵌入层状 MXene 纳米片中的纤维素纳米纤维(CNFs)的光敏离子通道。MXene/AuNS/CNF(MAC)膜为光敏感阳离子流动提供了亚纳米级的离子通道。当 MAC 纳米通道暴露于近红外光时,会形成光热梯度,这会导致纳米受限电解质沿热梯度的定向光热渗透流动,并产生净离子电流。与原始 MXene 相比,MAC 膜表现出增强的光热电流,这归因于等离子体 AuNS 和 MXene 的联合光热效应以及通过亲水性纳米纤维拓宽了 MAC 复合材料的间隔。预计 MAC 复合膜将应用于具有离子凝胶和光控离子电路的柔性离子通道中。