Suppr超能文献

一种用于太阳能光伏系统的混合最大功率点跟踪控制器的新发展,该系统采用宽电压增益DC-DC转换器。

A novel development of hybrid maximum power point tracking controller for solar pv systems with wide voltage gain DC-DC converter.

作者信息

Udayanan R, Chitraselvi S, Ramanujam N

机构信息

Department of Electrical and Electronics Engineering, Anjalai Ammal Mahalingam Engineering College, Kovilvenni, 614403, Tamil Nadu, India.

Department of Electrical and Electronics Engineering, University College of Engineering, Dindigul, 624622, Tamil Nadu, India.

出版信息

Sci Rep. 2024 Aug 26;14(1):19764. doi: 10.1038/s41598-024-70622-0.

Abstract

Now, the present power generation and distribution companies are working on renewable energy systems because their features are low-level atmospheric pollution, producing less greenhouse pollutants, more reliability, good static performance, and high robustness. In this work, the sunlight Photovoltaic (PV) system is selected because of its advantages are easily available in the atmosphere, high flexibility, zero carbon footprint, easy to maintain, and less transportation cost. However, solar networks produce nonlinear I-V characteristics. Due to the non-linear nature of the solar system, the extraction of peak voltage from the PV module is a very tough task. So, in this article, a variable modified step grey wolf method is integrated with the adaptive-neuro-fuzzy-inference-system to improve the energy production of solar systems. The features of this proposed maximum power point tracking controller are fast identification of the solar system operating point, generating the less fluctuated oriented converter load power, providing more MPP tracking accuracy, less dependence on the solar system installation, and useful for all environmental bad weather conditions. Another problem of solar systems is less voltage production which is improved by introducing a wide voltage gain-boost converter circuit. The features of this converter circuit are less development cost because it does not require more power electronics switches. Here, the proposed IGWM with an AFLC-fed sunlight system is investigated by using MATLAB/Simulink.

摘要

目前,现有的发电和配电公司正在致力于可再生能源系统,因为其特点是大气污染程度低、产生的温室污染物少、可靠性更高、静态性能良好且鲁棒性强。在这项工作中,选择太阳光光伏(PV)系统是因为其优点包括在大气中易于获取、灵活性高、碳足迹为零、易于维护且运输成本低。然而,太阳能网络会产生非线性的I-V特性。由于太阳能系统的非线性特性,从光伏模块中提取峰值电压是一项非常艰巨的任务。因此,在本文中,一种可变改进步长灰狼方法与自适应神经模糊推理系统相结合,以提高太阳能系统的发电量。这种提出的最大功率点跟踪控制器的特点是能快速识别太阳能系统的工作点、使定向变流器负载功率波动更小、提供更高的最大功率点跟踪精度、对太阳能系统安装的依赖性更小,并且适用于所有恶劣环境天气条件。太阳能系统的另一个问题是电压产生较少,通过引入宽电压增益升压转换器电路得以改善。这种转换器电路的特点是开发成本较低,因为它不需要更多的电力电子开关。在此,利用MATLAB/Simulink对所提出的带有自适应模糊逻辑控制器的改进灰狼法馈电太阳光系统进行了研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e35/11347570/a9b5fbd1f7f6/41598_2024_70622_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验