Ashwini Kumari P, Basha C H Hussaian, Fathima Fini, Dhanamjayulu C, Kotb Hossam, ELrashidi Ali
School of Electrical and Electronics Engineering, Reva University, Bangalore, India.
NITTE Meenakshi Institute of Technology (Autonomous), Bengaluru, India.
Sci Rep. 2024 Jun 5;14(1):12920. doi: 10.1038/s41598-024-63383-3.
The parameter extraction process for PV models poses a complex nonlinear and multi-model optimization challenge. Accurately estimating these parameters is crucial for optimizing the efficiency of PV systems. To address this, the paper introduces the Adaptive Rao Dichotomy Method (ARDM) which leverages the adaptive characteristics of the Rao algorithm and the Dichotomy Technique. ARDM is compared with the several recent optimization techniques, including the tuna swarm optimizer, African vulture's optimizer, and teaching-learning-based optimizer. Statistical analyses and experimental results demonstrate the ARDM's superior performance in the parameter extraction for the various PV models, such as RTC France and PWP 201 polycrystalline, utilizing manufacturer-provided datasheets. Comparisons with competing techniques further underscore ARDM dominance. Simulation results highlight ARDM quick processing time, steady convergence, and consistently high accuracy in delivering optimal solutions.
光伏模型的参数提取过程面临着复杂的非线性和多模型优化挑战。准确估计这些参数对于优化光伏系统的效率至关重要。为解决这一问题,本文介绍了自适应 Rao 二分法(ARDM),该方法利用了 Rao 算法的自适应特性和二分法技术。将 ARDM 与几种近期的优化技术进行了比较,包括金枪鱼群优化器、非洲秃鹫优化器和基于教与学的优化器。统计分析和实验结果表明,ARDM 在利用制造商提供的数据表对各种光伏模型(如法国 RTC 和 PWP 201 多晶)进行参数提取方面具有卓越性能。与竞争技术的比较进一步凸显了 ARDM 的优势。仿真结果突出了 ARDM 处理时间快、收敛稳定以及在提供最优解方面始终具有高精度的特点。