Department of Gynaecology and Obstetrics, Xijing Hospital, 15 Changle Western Road, Xi'an, Shaanxi, 710032, China.
BMC Cancer. 2024 Aug 26;24(1):1052. doi: 10.1186/s12885-024-12809-2.
Epithelial ovarian cancer (EOC) is one of the deadliest gynaecological malignancies worldwide. The aim of this retrospective study was to create a predictive scoring model based on simple immunological and inflammatory parameters to predict overall survival (OS) and progression-free survival (PFS) in patients with EOC.
We obtained 576 EOC patients and randomly assigned them to the training set (n = 405) and the validation set (n = 171) in a ratio of 7:3. We retrospectively evaluated the association between PIV and OS and PFS using a novel immunoinflammatory marker, according to the optihmal treshold of PIV, we divided the patients into two different subgroups, high PIV (PIV > 254.9) and low PIV (PIV ≤ 254.9). Pan-immune Inflammatory Value (PIV) was computed as follows: neutrophil count (10/L) × platelet count (10/L) × monocyte count (10/L)/lymphocyte count (10/L). Then developed a simple score prediction model based on several independent prognostic parameters using Cox regression analysis. We used receiver operator characteristic (ROC) curves, calibration plots, and decision analysis (DCA) curves to evaluate the performance of the model. Finally, we used Kaplan-Meier curves to ensure that the model could distinguish well between low- and high-risk groups.
There was a significant difference in survival outcomes between high PIV (PIV > 310.2) and low PIV (PIV ≤ PIV310.2) (3-year survival rates of 61.34% and 76.71%, respectively); 5-year OS, 25.21% and 51.14%, respectively; 3-year PFS, 40.90% and 65.30%; 5-year PFS, 19.33% and 39.73%, respectively). Column plots of OS and PFS were constructed using independent prognostic factors. In the training module, the 3-, 5-, and 10-year AUCs for OS and PFS column charts were 0.713, 0.796, 0.839, and 0.730, 0.799, 0.826, respectively.In the validation cohort, the 3-, 5-, and 10-year AUCs for OS and PFS column charts were 0.676, 0.803, 0.685, and 0.700, respectively, 0.754, 0.727. The calibration curves showed good agreement between predicted survival and actual observations. The decision analysis curves also showed that the current model has good accuracy and clinical applicability. 3-year OS was 61.34% and 76.71%, respectively; 5-year OS was 25.21% and 51.14%, respectively; 3-year PFS was 40.90% and 65.30%, respectively; 5-year PFS was 19.33% and 39.73%, respectively.
We constructed and validated a PIV-based nomogram to predict OS and PFS in EOC patients, with a view to helping gynaecologists converge on oncologists in their treatment and follow-up expertise in epithelial ovarian cancer.
上皮性卵巢癌(EOC)是全球最致命的妇科恶性肿瘤之一。本回顾性研究旨在创建一种基于简单免疫和炎症参数的预测评分模型,以预测 EOC 患者的总生存期(OS)和无进展生存期(PFS)。
我们获得了 576 名 EOC 患者,并按照 7:3 的比例将其随机分配到训练集(n=405)和验证集(n=171)。我们使用新的免疫炎症标志物回顾性评估 PIV 与 OS 和 PFS 的相关性,根据 PIV 的最佳阈值,我们将患者分为两个不同的亚组,高 PIV(PIV>254.9)和低 PIV(PIV≤254.9)。全免疫炎症值(PIV)计算如下:中性粒细胞计数(10/L)×血小板计数(10/L)×单核细胞计数(10/L)/淋巴细胞计数(10/L)。然后,我们使用 Cox 回归分析基于几个独立的预后参数开发了一个简单的评分预测模型。我们使用接收者操作特征(ROC)曲线、校准图和决策分析(DCA)曲线来评估模型的性能。最后,我们使用 Kaplan-Meier 曲线来确保模型能够很好地区分低风险和高风险组。
高 PIV(PIV>310.2)和低 PIV(PIV≤PIV310.2)之间的生存结果存在显著差异(3 年生存率分别为 61.34%和 76.71%;5 年 OS 分别为 25.21%和 51.14%;3 年 PFS 分别为 40.90%和 65.30%;5 年 PFS 分别为 19.33%和 39.73%)。构建了 OS 和 PFS 的列线图,使用独立的预后因素。在训练模块中,OS 和 PFS 列线图的 3、5 和 10 年 AUC 分别为 0.713、0.796、0.839 和 0.730、0.799、0.826。在验证队列中,OS 和 PFS 列线图的 3、5 和 10 年 AUC 分别为 0.676、0.803、0.685 和 0.700、0.754、0.727。校准曲线显示预测生存与实际观察之间具有良好的一致性。决策分析曲线也表明,当前模型具有良好的准确性和临床适用性。3 年 OS 分别为 61.34%和 76.71%;5 年 OS 分别为 25.21%和 51.14%;3 年 PFS 分别为 40.90%和 65.30%;5 年 PFS 分别为 19.33%和 39.73%。
我们构建并验证了一种基于 PIV 的列线图,以预测 EOC 患者的 OS 和 PFS,以期帮助妇科医生在治疗和随访上皮性卵巢癌方面与肿瘤医生达成共识。