Suppr超能文献

用于数字孪生的模型驱动工程:基于图形模型的患者模拟应用程序。

Model-driven engineering for digital twins: a graph model-based patient simulation application.

作者信息

Trevena William, Zhong Xiang, Lal Amos, Rovati Lucrezia, Cubro Edin, Dong Yue, Schulte Phillip, Gajic Ognjen

机构信息

Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, United States.

Mayo Clinic, Rochester, MN, United States.

出版信息

Front Physiol. 2024 Aug 12;15:1424931. doi: 10.3389/fphys.2024.1424931. eCollection 2024.

Abstract

INTRODUCTION

Digital twins of patients are virtual models that can create a digital patient replica to test clinical interventions without exposing real patients to risk. With the increasing availability of electronic health records and sensor-derived patient data, digital twins offer significant potential for applications in the healthcare sector.

METHODS

This article presents a scalable full-stack architecture for a patient simulation application driven by graph-based models. This patient simulation application enables medical practitioners and trainees to simulate the trajectory of critically ill patients with sepsis. Directed acyclic graphs are utilized to model the complex underlying causal pathways that focus on the physiological interactions and medication effects relevant to the first 6 h of critical illness. To realize the sepsis patient simulation at scale, we propose an application architecture with three core components, a cross-platform frontend application that clinicians and trainees use to run the simulation, a simulation engine hosted in the cloud on a serverless function that performs all of the computations, and a graph database that hosts the graph model utilized by the simulation engine to determine the progression of each simulation.

RESULTS

A short case study is presented to demonstrate the viability of the proposed simulation architecture.

DISCUSSION

The proposed patient simulation application could help train future generations of healthcare professionals and could be used to facilitate clinicians' bedside decision-making.

摘要

引言

患者数字孪生是一种虚拟模型,可创建数字患者复制品,以测试临床干预措施,而无需让真实患者面临风险。随着电子健康记录和传感器衍生的患者数据越来越容易获取,数字孪生在医疗保健领域的应用具有巨大潜力。

方法

本文提出了一种由基于图的模型驱动的患者模拟应用程序的可扩展全栈架构。该患者模拟应用程序使医生和实习生能够模拟脓毒症重症患者的病程。有向无环图用于对复杂的潜在因果路径进行建模,这些路径关注与危重病最初6小时相关的生理相互作用和药物作用。为了大规模实现脓毒症患者模拟,我们提出了一种具有三个核心组件的应用程序架构,一个供临床医生和实习生用于运行模拟的跨平台前端应用程序,一个托管在无服务器函数云中执行所有计算的模拟引擎,以及一个托管模拟引擎用于确定每个模拟进程的图模型的图数据库。

结果

给出了一个简短的案例研究,以证明所提出的模拟架构的可行性。

讨论

所提出的患者模拟应用程序可以帮助培训下一代医疗保健专业人员,并可用于促进临床医生的床边决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5403/11345177/e8ec5d91d9d9/fphys-15-1424931-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验