Trevena William, Zhong Xiang, Lal Amos, Rovati Lucrezia, Cubro Edin, Dong Yue, Schulte Phillip, Gajic Ognjen
Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, United States.
Mayo Clinic, Rochester, MN, United States.
Front Physiol. 2024 Aug 12;15:1424931. doi: 10.3389/fphys.2024.1424931. eCollection 2024.
Digital twins of patients are virtual models that can create a digital patient replica to test clinical interventions without exposing real patients to risk. With the increasing availability of electronic health records and sensor-derived patient data, digital twins offer significant potential for applications in the healthcare sector.
This article presents a scalable full-stack architecture for a patient simulation application driven by graph-based models. This patient simulation application enables medical practitioners and trainees to simulate the trajectory of critically ill patients with sepsis. Directed acyclic graphs are utilized to model the complex underlying causal pathways that focus on the physiological interactions and medication effects relevant to the first 6 h of critical illness. To realize the sepsis patient simulation at scale, we propose an application architecture with three core components, a cross-platform frontend application that clinicians and trainees use to run the simulation, a simulation engine hosted in the cloud on a serverless function that performs all of the computations, and a graph database that hosts the graph model utilized by the simulation engine to determine the progression of each simulation.
A short case study is presented to demonstrate the viability of the proposed simulation architecture.
The proposed patient simulation application could help train future generations of healthcare professionals and could be used to facilitate clinicians' bedside decision-making.
患者数字孪生是一种虚拟模型,可创建数字患者复制品,以测试临床干预措施,而无需让真实患者面临风险。随着电子健康记录和传感器衍生的患者数据越来越容易获取,数字孪生在医疗保健领域的应用具有巨大潜力。
本文提出了一种由基于图的模型驱动的患者模拟应用程序的可扩展全栈架构。该患者模拟应用程序使医生和实习生能够模拟脓毒症重症患者的病程。有向无环图用于对复杂的潜在因果路径进行建模,这些路径关注与危重病最初6小时相关的生理相互作用和药物作用。为了大规模实现脓毒症患者模拟,我们提出了一种具有三个核心组件的应用程序架构,一个供临床医生和实习生用于运行模拟的跨平台前端应用程序,一个托管在无服务器函数云中执行所有计算的模拟引擎,以及一个托管模拟引擎用于确定每个模拟进程的图模型的图数据库。
给出了一个简短的案例研究,以证明所提出的模拟架构的可行性。
所提出的患者模拟应用程序可以帮助培训下一代医疗保健专业人员,并可用于促进临床医生的床边决策。