Suppr超能文献

用于预测脓毒症最初24小时内特定治疗反应的数字孪生患者模型的开发与验证

Development and Verification of a Digital Twin Patient Model to Predict Specific Treatment Response During the First 24 Hours of Sepsis.

作者信息

Lal Amos, Li Guangxi, Cubro Edin, Chalmers Sarah, Li Heyi, Herasevich Vitaly, Dong Yue, Pickering Brian W, Kilickaya Oguz, Gajic Ognjen

机构信息

Department of Medicine, Division of Pulmonary and Critical Care Medicine, Multidisciplinary Epidemiology and Translational Research in Intensive Care Group, Mayo Clinic, Rochester, MN.

Department of Anesthesiology and Perioperative Medicine, Division of Critical Care, Multidisciplinary Epidemiology and Translational Research in Intensive Care Group, Mayo Clinic, Rochester, MN.

出版信息

Crit Care Explor. 2020 Nov 16;2(11):e0249. doi: 10.1097/CCE.0000000000000249. eCollection 2020 Nov.

Abstract

UNLABELLED

To develop and verify a digital twin model of critically ill patient using the causal artificial intelligence approach to predict the response to specific treatment during the first 24 hours of sepsis.

DESIGN

Directed acyclic graphs were used to define explicitly the causal relationship among organ systems and specific treatments used. A hybrid approach of agent-based modeling, discrete-event simulation, and Bayesian network was used to simulate treatment effect across multiple stages and interactions of major organ systems (cardiovascular, neurologic, renal, respiratory, gastrointestinal, inflammatory, and hematology). Organ systems were visualized using relevant clinical markers. The application was iteratively revised and debugged by clinical experts and engineers. Agreement statistics was used to test the performance of the model by comparing the observed patient response versus the expected response (primary and secondary) predicted by digital twin.

SETTING

Medical ICU of a large quaternary- care academic medical center in the United States.

PATIENTS OR SUBJECTS

Adult (> 18 year yr old), medical ICU patients were included in the study.

INTERVENTIONS

No additional interventions were made beyond the standard of care for this study.

MEASUREMENTS AND MAIN RESULTS

During the verification phase, model performance was prospectively tested on 145 observations in a convenience sample of 29 patients. Median age was 60 years (54-66 d) with a median Sequential Organ Failure Assessment score of 9.5 (interquartile range, 5.0-14.0). The most common source of sepsis was pneumonia, followed by hepatobiliary. The observations were made during the first 24 hours of the ICU admission with one-step interventions, comparing the output in the digital twin with the real patient response. The agreement between the observed versus and the expected response ranged from fair (kappa coefficient of 0.41) for primary response to good (kappa coefficient of 0.65) for secondary response to the intervention. The most common error detected was coding error in 50 observations (35%), followed by expert rule error in 29 observations (20%) and timing error in seven observations (5%).

CONCLUSIONS

We confirmed the feasibility of development and prospective testing of causal artificial intelligence model to predict the response to treatment in early stages of critical illness. The availability of qualitative and quantitative data and a relatively short turnaround time makes the ICU an ideal environment for development and testing of digital twin patient models. An accurate digital twin model will allow the effect of an intervention to be tested in a virtual environment prior to use on real patients.

摘要

未标注

使用因果人工智能方法开发并验证危重症患者的数字孪生模型,以预测脓毒症最初24小时内对特定治疗的反应。

设计

使用有向无环图明确界定器官系统与所用特定治疗之间的因果关系。采用基于智能体建模、离散事件模拟和贝叶斯网络的混合方法,模拟主要器官系统(心血管、神经、肾脏、呼吸、胃肠道、炎症和血液学)在多个阶段和相互作用中的治疗效果。使用相关临床指标对器官系统进行可视化。临床专家和工程师对该应用进行了反复修订和调试。通过比较观察到的患者反应与数字孪生预测的预期反应(主要和次要),使用一致性统计来测试模型的性能。

地点

美国一家大型四级医疗学术医学中心的医学重症监护病房。

患者或受试者

纳入研究的为成年(>18岁)医学重症监护病房患者。

干预措施

本研究除标准治疗外未采取额外干预措施。

测量与主要结果

在验证阶段,对29例患者的便利样本中的145次观察进行了模型性能的前瞻性测试。中位年龄为60岁(54 - 66岁),序贯器官衰竭评估评分中位数为9.5(四分位间距,5.0 - 14.0)。脓毒症最常见的来源是肺炎,其次是肝胆疾病。观察在重症监护病房入院的最初24小时内进行,采用一步干预措施,将数字孪生中的输出与真实患者反应进行比较。观察到的反应与预期反应之间的一致性,主要反应为中等(kappa系数为0.41),对干预的次要反应为良好(kappa系数为0.65)。检测到的最常见错误是50次观察(35%)中的编码错误,其次是29次观察(20%)中的专家规则错误和7次观察(5%)中的时间错误。

结论

我们证实了开发并前瞻性测试因果人工智能模型以预测危重症早期治疗反应的可行性。定性和定量数据的可用性以及相对较短的周转时间使重症监护病房成为开发和测试数字孪生患者模型的理想环境。准确的数字孪生模型将允许在对真实患者使用之前在虚拟环境中测试干预效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ed5/7671877/6cf1fe72bc98/cc9-2-e0249-g001.jpg

相似文献

1
Development and Verification of a Digital Twin Patient Model to Predict Specific Treatment Response During the First 24 Hours of Sepsis.
Crit Care Explor. 2020 Nov 16;2(11):e0249. doi: 10.1097/CCE.0000000000000249. eCollection 2020 Nov.
2
An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.
Crit Care Med. 2018 Apr;46(4):547-553. doi: 10.1097/CCM.0000000000002936.
6
Model-driven engineering for digital twins: a graph model-based patient simulation application.
Front Physiol. 2024 Aug 12;15:1424931. doi: 10.3389/fphys.2024.1424931. eCollection 2024.
7
Sepsis Care Pathway 2019.
Qatar Med J. 2019 Nov 7;2019(2):4. doi: 10.5339/qmj.2019.qccc.4. eCollection 2019.
8
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247.
9
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
10
Development and usability testing of a patient digital twin for critical care education: a mixed methods study.
Front Med (Lausanne). 2024 Jan 11;10:1336897. doi: 10.3389/fmed.2023.1336897. eCollection 2023.

引用本文的文献

1
Digital Twins for Clinical and Operational Decision-Making: Scoping Review.
J Med Internet Res. 2025 Jan 8;27:e55015. doi: 10.2196/55015.
2
Advances and utility of digital twins in critical care and acute care medicine: a narrative review.
J Yeungnam Med Sci. 2025;42:9. doi: 10.12701/jyms.2024.01053. Epub 2024 Nov 25.
4
Large Language Models in Neurosurgery.
Adv Exp Med Biol. 2024;1462:177-198. doi: 10.1007/978-3-031-64892-2_11.
5
Towards generative digital twins in biomedical research.
Comput Struct Biotechnol J. 2024 Oct 3;23:3481-3488. doi: 10.1016/j.csbj.2024.09.030. eCollection 2024 Dec.
6
Multiple organ failure: What you need to know.
J Trauma Acute Care Surg. 2024 Sep 3. doi: 10.1097/TA.0000000000004419.
7
Model-driven engineering for digital twins: a graph model-based patient simulation application.
Front Physiol. 2024 Aug 12;15:1424931. doi: 10.3389/fphys.2024.1424931. eCollection 2024.
8
Evolution of digital twins in precision health applications: a scoping review study.
Res Sq. 2024 Aug 7:rs.3.rs-4612942. doi: 10.21203/rs.3.rs-4612942/v1.
9
Envisioning the Future of Personalized Medicine: Role and Realities of Digital Twins.
J Med Internet Res. 2024 May 13;26:e50204. doi: 10.2196/50204.
10
Digital twins in medicine.
Nat Comput Sci. 2024 Mar;4(3):184-191. doi: 10.1038/s43588-024-00607-6. Epub 2024 Mar 26.

本文引用的文献

1
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.
Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13.
2
Artificial intelligence and computer simulation models in critical illness.
World J Crit Care Med. 2020 Jun 5;9(2):13-19. doi: 10.5492/wjccm.v9.i2.13.
4
Should Health Care Demand Interpretable Artificial Intelligence or Accept "Black Box" Medicine?
Ann Intern Med. 2020 Jan 7;172(1):59-60. doi: 10.7326/M19-2548. Epub 2019 Dec 17.
6
A clinically applicable approach to continuous prediction of future acute kidney injury.
Nature. 2019 Aug;572(7767):116-119. doi: 10.1038/s41586-019-1390-1. Epub 2019 Jul 31.
9
The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care.
Nat Med. 2018 Nov;24(11):1716-1720. doi: 10.1038/s41591-018-0213-5. Epub 2018 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验