Suppr超能文献

抗体-SGM,一种基于评分的抗体重链设计生成模型。

Antibody-SGM, a Score-Based Generative Model for Antibody Heavy-Chain Design.

机构信息

Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.

Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada.

出版信息

J Chem Inf Model. 2024 Sep 9;64(17):6745-6757. doi: 10.1021/acs.jcim.4c00711. Epub 2024 Aug 27.

Abstract

Traditional computational methods for antibody design involved random mutagenesis followed by energy function assessment for candidate selection. Recently, diffusion models have garnered considerable attention as cutting-edge generative models, lauded for their remarkable performance. However, these methods often focus solely on the backbone or sequence, resulting in the incomplete depiction of the overall structure and necessitating additional techniques to predict the missing component. This study presents Antibody-SGM, an innovative joint structure-sequence diffusion model that addresses the limitations of existing protein backbone generation models. Unlike previous models, Antibody-SGM successfully integrates sequence-specific attributes and functional properties into the generation process. Our methodology generates full-atom native-like antibody heavy chains by refining the generation to create valid pairs of sequences and structures, starting with random sequences and structural properties. The versatility of our method is demonstrated through various applications, including the design of full-atom antibodies, antigen-specific CDR design, antibody heavy chains optimization, validation with Alphafold3, and the identification of crucial antibody sequences and structural features. Antibody-SGM also optimizes protein function through active inpainting learning, allowing simultaneous sequence and structure optimization. These improvements demonstrate the promise of our strategy for protein engineering and significantly increase the power of protein design models.

摘要

传统的抗体设计计算方法涉及随机诱变,然后对候选物进行能量函数评估。最近,扩散模型作为先进的生成模型引起了相当大的关注,因其出色的性能而受到赞誉。然而,这些方法通常仅关注骨架或序列,导致对整体结构的不完全描述,需要额外的技术来预测缺失的部分。本研究提出了 Antibody-SGM,这是一种创新的联合结构-序列扩散模型,解决了现有蛋白质骨架生成模型的局限性。与之前的模型不同,Antibody-SGM 成功地将序列特异性属性和功能属性集成到生成过程中。我们的方法通过精炼生成过程来生成全原子类似天然的抗体重链,从而从随机序列和结构属性开始创建有效的序列和结构对。我们的方法通过各种应用得到了验证,包括全原子抗体的设计、抗原特异性 CDR 设计、抗体重链优化、与 Alphafold3 的验证以及关键抗体序列和结构特征的识别。Antibody-SGM 还通过主动补全学习优化蛋白质功能,允许同时进行序列和结构优化。这些改进表明我们的策略在蛋白质工程中有很大的潜力,并显著提高了蛋白质设计模型的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验