Bielska Weronika, Jaszczyszyn Igor, Dudzic Pawel, Janusz Bartosz, Chomicz Dawid, Wrobel Sonia, Greiff Victor, Feehan Ryan, Adolf-Bryfogle Jared, Krawczyk Konrad
NaturalAntibody, Szczecin, Poland.
Medical University of Lodz, Lodz, Poland.
Front Immunol. 2025 May 22;16:1571371. doi: 10.3389/fimmu.2025.1571371. eCollection 2025.
Machine learning applications in protein sciences have ushered in a new era for designing molecules in silico. Antibodies, which currently form the largest group of biologics in clinical use, stand to benefit greatly from this shift. Despite the proliferation of these protein design tools, their direct application to antibodies is often limited by the unique structural biology of these molecules. We note that multiple methods attempting antibody design focus on the discovery of an antigen-specific antibody. Here, we review the current computational methods for antibody design, focusing on binder discovery, contextualizing their role in the drug discovery process.
机器学习在蛋白质科学中的应用开启了计算机辅助分子设计的新时代。抗体是目前临床使用中最大的一类生物制品,有望从这一转变中大大受益。尽管这些蛋白质设计工具不断涌现,但它们在抗体上的直接应用往往受到这些分子独特结构生物学的限制。我们注意到,多种尝试进行抗体设计的方法都聚焦于发现抗原特异性抗体。在此,我们综述了当前用于抗体设计的计算方法,重点关注结合物发现,并将它们在药物发现过程中的作用进行情境化分析。