Suppr超能文献

将计算蛋白质设计应用于治疗性抗体发现——现状与展望。

Applying computational protein design to therapeutic antibody discovery - current state and perspectives.

作者信息

Bielska Weronika, Jaszczyszyn Igor, Dudzic Pawel, Janusz Bartosz, Chomicz Dawid, Wrobel Sonia, Greiff Victor, Feehan Ryan, Adolf-Bryfogle Jared, Krawczyk Konrad

机构信息

NaturalAntibody, Szczecin, Poland.

Medical University of Lodz, Lodz, Poland.

出版信息

Front Immunol. 2025 May 22;16:1571371. doi: 10.3389/fimmu.2025.1571371. eCollection 2025.

Abstract

Machine learning applications in protein sciences have ushered in a new era for designing molecules in silico. Antibodies, which currently form the largest group of biologics in clinical use, stand to benefit greatly from this shift. Despite the proliferation of these protein design tools, their direct application to antibodies is often limited by the unique structural biology of these molecules. We note that multiple methods attempting antibody design focus on the discovery of an antigen-specific antibody. Here, we review the current computational methods for antibody design, focusing on binder discovery, contextualizing their role in the drug discovery process.

摘要

机器学习在蛋白质科学中的应用开启了计算机辅助分子设计的新时代。抗体是目前临床使用中最大的一类生物制品,有望从这一转变中大大受益。尽管这些蛋白质设计工具不断涌现,但它们在抗体上的直接应用往往受到这些分子独特结构生物学的限制。我们注意到,多种尝试进行抗体设计的方法都聚焦于发现抗原特异性抗体。在此,我们综述了当前用于抗体设计的计算方法,重点关注结合物发现,并将它们在药物发现过程中的作用进行情境化分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a57d/12137305/5bc42ef80208/fimmu-16-1571371-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验