Ye Ziming, Fang Tao, Cong Chaonan, Chen Kun, Zhang Ding, Kong Xiaobing, Wang Qi, Liu Shizhuo, Li Meng, Zhao Bo, Xia Zhiyuan, Shang Yuanyuan, Liu Lei, Shi Enzheng, Wei Xiaoding, Cao Anyuan
School of Materials Science and Engineering, Peking University, Beijing 100871, China.
College of Engineering, Peking University, Beijing 100871, China.
ACS Nano. 2024 Sep 10;18(36):24984-24996. doi: 10.1021/acsnano.4c05966. Epub 2024 Aug 27.
Lightweight materials with high strength and long cyclic lifespan are greatly demanded in practical applications, yet these properties are usually mutually exclusive. Here, we present a strong, lightweight, highly deformation-tolerant, and fatigue-resistant carbon nanotube (CNT) composite enabled by an amorphous/crystalline heterophase carbon shell. In particular, we obtain nanocrystallites with CNT-induced crystalline orientation uniformly embedded within an amorphous matrix by controlled thermal annealing. The heterophase carbon shell effectively alleviates the stress concentration and inhibits crack propagation, which renders our composite superior mechanical properties and high fatigue resistance (10 compression cycles at 20% strain with high stress of 144 kPa, or 5 × 10 cycles at 50% strain with stress up to 260 kPa). This study provides a deep understanding of amorphous-crystalline phase transition and insight into utilizing phase engineering to design and develop other high-performance functional materials such as structural materials and catalysis.
实际应用中迫切需要具有高强度和长循环寿命的轻质材料,但这些性能通常相互排斥。在此,我们展示了一种由非晶/结晶异相碳壳实现的强韧、轻质、高变形耐受性和抗疲劳的碳纳米管(CNT)复合材料。具体而言,我们通过控制热退火获得了纳米微晶,其具有由CNT诱导的晶体取向,均匀地嵌入非晶基质中。异相碳壳有效地减轻了应力集中并抑制了裂纹扩展,这赋予了我们的复合材料优异的力学性能和高抗疲劳性(在20%应变下,144 kPa的高应力下进行10次压缩循环,或在50%应变下,高达260 kPa的应力下进行5×10次循环)。这项研究深入理解了非晶-结晶相变,并为利用相工程设计和开发其他高性能功能材料(如结构材料和催化材料)提供了见解。