Suppr超能文献

利用全身[F]FDG-PET/CT成像检测肺癌患者的癌症相关性恶病质:一项多中心研究。

Detection of cancer-associated cachexia in lung cancer patients using whole-body [F]FDG-PET/CT imaging: A multi-centre study.

作者信息

Ferrara Daria, Abenavoli Elisabetta M, Beyer Thomas, Gruenert Stefan, Hacker Marcus, Hesse Swen, Hofmann Lukas, Pusitz Smilla, Rullmann Michael, Sabri Osama, Sciagrà Roberto, Sundar Lalith Kumar Shiyam, Tönjes Anke, Wirtz Hubert, Yu Josef, Frille Armin

机构信息

QIMP Team, Medical University of Vienna, Vienna, Austria.

Division of Nuclear Medicine, Azienda Ospedaliero Universitaria Careggi, Florence, Italy.

出版信息

J Cachexia Sarcopenia Muscle. 2024 Dec;15(6):2375-2386. doi: 10.1002/jcsm.13571. Epub 2024 Aug 27.

Abstract

BACKGROUND

Cancer-associated cachexia (CAC) is a metabolic syndrome contributing to therapy resistance and mortality in lung cancer patients (LCP). CAC is typically defined using clinical non-imaging criteria. Given the metabolic underpinnings of CAC and the ability of [F]fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET)/computer tomography (CT) to provide quantitative information on glucose turnover, we evaluate the usefulness of whole-body (WB) PET/CT imaging, as part of the standard diagnostic workup of LCP, to provide additional information on the onset or presence of CAC.

METHODS

This multi-centre study included 345 LCP who underwent WB [F]FDG-PET/CT imaging for initial clinical staging. A weight loss grading system (WLGS) adjusted to body mass index was used to classify LCP into 'No CAC' (WLGS-0/1 at baseline prior treatment and at first follow-up: N = 158, 51F/107M), 'Dev CAC' (WLGS-0/1 at baseline and WLGS-3/4 at follow-up: N = 90, 34F/56M), and 'CAC' (WLGS-3/4 at baseline: N = 97, 31F/66M). For each CAC category, mean standardized uptake values (SUV) normalized to aorta uptake () and CT-defined volumes were extracted for abdominal and visceral organs, muscles, and adipose-tissue using automated image segmentation of baseline [F]FDG-PET/CT images. Imaging and non-imaging parameters from laboratory tests were compared statistically. A machine-learning (ML) model was then trained to classify LCP as 'No CAC', 'Dev CAC', and 'CAC' based on their imaging parameters. SHapley Additive exPlanations (SHAP) analysis was employed to identify the key factors contributing to CAC development for each patient.

RESULTS

The three CAC categories displayed multi-organ differences in . In all target organs, was higher in the 'CAC' cohort compared with 'No CAC' (P < 0.01), except for liver and kidneys, where in 'CAC' was reduced by 5%. The 'Dev CAC' cohort displayed a small but significant increase in of pancreas (+4%), skeletal-muscle (+7%), subcutaneous adipose-tissue (+11%), and visceral adipose-tissue (+15%). In 'CAC' patients, a strong negative Spearman correlation (ρ = -0.8) was identified between and volumes of adipose-tissue. The machine-learning model identified 'CAC' at baseline with 81% of accuracy, highlighting of spleen, pancreas, liver, and adipose-tissue as most relevant features. The model performance was suboptimal (54%) when classifying 'Dev CAC' versus 'No CAC'.

CONCLUSIONS

WB [F]FDG-PET/CT imaging reveals groupwise differences in the multi-organ metabolism of LCP with and without CAC, thus highlighting systemic metabolic aberrations symptomatic of cachectic patients. Based on a retrospective cohort, our ML model identified patients with CAC with good accuracy. However, its performance in patients developing CAC was suboptimal. A prospective, multi-centre study has been initiated to address the limitations of the present retrospective analysis.

摘要

背景

癌症相关性恶病质(CAC)是一种代谢综合征,可导致肺癌患者(LCP)出现治疗抵抗和死亡。CAC通常使用临床非影像学标准进行定义。鉴于CAC的代谢基础以及[F]氟代脱氧葡萄糖(FDG)-正电子发射断层扫描(PET)/计算机断层扫描(CT)能够提供有关葡萄糖代谢的定量信息,我们评估全身(WB)PET/CT成像作为LCP标准诊断检查的一部分,对于提供有关CAC发生或存在的额外信息的有用性。

方法

这项多中心研究纳入了345例接受WB [F]FDG-PET/CT成像进行初始临床分期的LCP。使用根据体重指数调整的体重减轻分级系统(WLGS)将LCP分为“无CAC”(治疗前基线和首次随访时WLGS为0/1:N = 158,51名女性/107名男性)、“发展性CAC”(基线时WLGS为0/1且随访时WLGS为3/4:N = 90,34名女性/56名男性)和“CAC”(基线时WLGS为3/4:N = 97,31名女性/66名男性)。对于每个CAC类别,使用基线[F]FDG-PET/CT图像的自动图像分割,提取腹部和内脏器官、肌肉以及脂肪组织的平均标准化摄取值(SUV)(标准化至主动脉摄取量,)和CT定义的体积。对实验室检查的影像学和非影像学参数进行统计学比较。然后训练一个机器学习(ML)模型,根据LCP的影像学参数将其分类为“无CAC”、“发展性CAC”和“CAC”。采用SHapley加性解释(SHAP)分析来确定每位患者CAC发生的关键因素。

结果

三个CAC类别在方面显示出多器官差异。在所有靶器官中,“CAC”队列的高于“无CAC”队列(P < 0.01),肝脏和肾脏除外,“CAC”队列中这两个器官的降低了5%。“发展性CAC”队列的胰腺(+4%)、骨骼肌(+7%)、皮下脂肪组织(+11%)和内脏脂肪组织(+15%)的有小幅但显著的增加。在“CAC”患者中,与脂肪组织体积之间存在强烈的负Spearman相关性(ρ = -0.8)。机器学习模型在基线时识别“CAC”的准确率为81%,突出显示脾脏、胰腺、肝脏和脂肪组织的为最相关特征。在区分“发展性CAC”与“无CAC”时,模型性能次优(54%)。

结论

WB [F]FDG-PET/CT成像揭示了有或无CAC的LCP多器官代谢的分组差异,从而突出了恶病质患者的全身代谢异常。基于回顾性队列,我们的ML模型能较好地识别出患有CAC的患者。然而,其在发生CAC的患者中的性能次优。已启动一项前瞻性多中心研究以解决当前回顾性分析的局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fa8/11634466/8f83f2d71f3b/JCSM-15-2375-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验