Suppr超能文献

使用多保真度机器学习筛选用于光催化水分解的新型卤化物钙钛矿。

Screening of novel halide perovskites for photocatalytic water splitting using multi-fidelity machine learning.

作者信息

Biswas Maitreyo, Desai Rushik, Mannodi-Kanakkithodi Arun

机构信息

School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.

出版信息

Phys Chem Chem Phys. 2024 Sep 11;26(35):23177-23188. doi: 10.1039/d4cp02330g.

Abstract

Photocatalytic water splitting is an efficient and sustainable technology to produce high-purity hydrogen gas for clean energy using solar energy. Despite the tremendous success of halide perovskites as absorbers in solar cells, their utility for water splitting applications has not been systematically explored. A band gap greater than 1.23 eV, high solar absorption coefficients, efficient separation of charge carriers, and adequate overpotentials for water redox reaction are crucial for a high solar to hydrogen (STH) efficiency. In this work, we present a data-driven approach to identify novel lead-free halide perovskites with high STH efficiency ( > 20%), building upon our recently published computational data and machine learning (ML) models. Our multi-fidelity density functional theory (DFT) dataset comprises decomposition energies and band gaps of nearly 1000 pure and alloyed perovskite halides using both the GGA-PBE and HSE06 functionals. Using rigorously optimized composition-based ML regression models, we performed screening across a chemical space of 150 000+ halide perovskites to yield hundreds of stable compounds with suitable band gaps and edges for photocatalytic water splitting. A handful of the best candidates were investigated with in-depth DFT computations to validate their properties. This work presents a framework for accelerating the navigation of a massive chemical space of halide perovskite alloys and understanding their potential utility for water splitting and motivates future efforts towards the synthesis and characterization of the most promising materials.

摘要

光催化水分解是一种利用太阳能生产用于清洁能源的高纯度氢气的高效且可持续的技术。尽管卤化物钙钛矿作为太阳能电池中的吸收剂取得了巨大成功,但其在水分解应用中的效用尚未得到系统探索。大于1.23电子伏特的带隙、高太阳能吸收系数、电荷载流子的有效分离以及水氧化还原反应的足够过电位对于高的太阳能到氢能(STH)效率至关重要。在这项工作中,我们基于最近发表的计算数据和机器学习(ML)模型,提出了一种数据驱动的方法来识别具有高STH效率(>20%)的新型无铅卤化物钙钛矿。我们的多保真度密度泛函理论(DFT)数据集包含使用GGA - PBE和HSE06泛函的近1000种纯钙钛矿卤化物和合金钙钛矿卤化物的分解能和带隙。使用经过严格优化的基于成分的ML回归模型,我们在超过150000种卤化物钙钛矿的化学空间中进行筛选,以产生数百种具有适合光催化水分解的带隙和边缘的稳定化合物。通过深入的DFT计算对少数最佳候选物进行了研究,以验证它们的性质。这项工作提出了一个框架,用于加速卤化物钙钛矿合金巨大化学空间的探索,并理解它们在水分解中的潜在效用,同时激发未来对最有前景材料的合成和表征的努力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验