Suppr超能文献

马拉色菌通过保守的 Rim/Pal 途径对环境 pH 信号做出反应。

Malassezia responds to environmental pH signals through the conserved Rim/Pal pathway.

机构信息

Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.

Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA.

出版信息

mBio. 2024 Oct 16;15(10):e0206024. doi: 10.1128/mbio.02060-24. Epub 2024 Aug 27.

Abstract

During mammalian colonization and infection, microorganisms must be able to rapidly sense and adapt to changing environmental conditions including alterations in extracellular pH. The fungus-specific Rim/Pal signaling pathway is one process that supports microbial adaptation to alkaline pH. This cascading series of interacting proteins terminates in the proteolytic activation of the highly conserved Rim101/PacC protein, a transcription factor that mediates microbial responses that favor survival in neutral/alkaline pH growth conditions, including many mammalian tissues. We identified the putative Rim pathway proteins Rim101 and Rra1 in the human skin colonizing fungus . Gene deletion by transconjugation and homologous recombination revealed that Rim101 and Rra1 are required for growth at higher pH. In addition, comparative transcriptional analysis of the mutant strains compared to wild-type suggested mechanisms for fungal adaptation to alkaline conditions. These pH-sensing signaling proteins are required for optimal growth in a murine model of atopic dermatitis, a pathological condition associated with increased skin pH. Together, these data elucidate both conserved and phylum-specific features of microbial adaptation to extracellular stresses.IMPORTANCEThe ability to adapt to host pH has been previously associated with microbial virulence in several pathogenic fungal species. Here we demonstrate that a fungal-specific alkaline response pathway is conserved in the human skin commensal fungus (). This pathway is characterized by the pH-dependent activation of the Rim101/PacC transcription factor that controls cell surface adaptations to changing environmental conditions. By disrupting genes encoding two predicted components of this pathway, we demonstrated that the Rim/Pal pathway is conserved in this fungal species as a facilitator of alkaline pH growth. Moreover, targeted gene mutation and comparative transcriptional analysis support the role of the Rra1 protein as a cell surface pH sensor conserved within the basidiomycete fungi, a group including plant and human pathogens. Using an animal model of atopic dermatitis, we demonstrate the importance of Rim/Pal signaling in this common inflammatory condition characterized by increased skin pH.

摘要

在哺乳动物的定殖和感染过程中,微生物必须能够快速感知和适应不断变化的环境条件,包括细胞外 pH 值的变化。真菌特异性 Rim/Pal 信号通路是支持微生物适应碱性 pH 值的过程之一。这一系列相互作用的蛋白质最终导致高度保守的 Rim101/PacC 蛋白的蛋白水解激活,该蛋白是一种转录因子,介导微生物对中性/碱性 pH 值生长条件(包括许多哺乳动物组织)有利的生存反应。我们在定殖于人体皮肤的真菌 中鉴定了假定的 Rim 途径蛋白 Rim101 和 Rra1。通过转导和同源重组进行基因缺失,发现 Rim101 和 Rra1 是在较高 pH 值下生长所必需的。此外,与野生型相比,对突变株的比较转录分析表明了真菌适应碱性条件的机制。这些 pH 感应信号蛋白对于在特应性皮炎的小鼠模型中的最佳生长是必需的,特应性皮炎是一种与皮肤 pH 值升高相关的病理状况。这些数据一起阐明了微生物对细胞外应激的适应的保守和门特异性特征。

重要性

先前已经将适应宿主 pH 值与几种致病性真菌物种的微生物毒力联系起来。在这里,我们证明了一种真菌特异性的碱性反应途径在人体皮肤共生真菌 ()中是保守的。该途径的特征是 Rim101/PacC 转录因子的 pH 依赖性激活,该转录因子控制细胞表面适应不断变化的环境条件。通过破坏编码该途径两个预测成分的基因,我们证明了 Rim/Pal 途径在该真菌物种中是碱性 pH 值生长的促进因子。此外,靶向基因突变和比较转录分析支持 Rra1 蛋白作为细胞表面 pH 传感器的作用在担子菌真菌中是保守的,担子菌真菌包括植物和人类病原体。使用特应性皮炎的动物模型,我们证明了 Rim/Pal 信号在这种常见的炎症状况中的重要性,其特征是皮肤 pH 值升高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ba5/11481519/b9122afcc9ce/mbio.02060-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验