State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
ACS Nano. 2024 Sep 10;18(36):25155-25169. doi: 10.1021/acsnano.4c07038. Epub 2024 Aug 27.
Steviol glycosides (SGs) are a class of high-potency noncalorie natural sweeteners made up of a common diterpenoid core and varying glycans. Thus, the diversity of glycans in composition, linkage, and isomerism results in the tremendous structural complexity of the SG family, which poses challenges for the precise identification and leads to the fact that SGs are frequently used in mixtures and their variances in biological activity remain largely unexplored. Here we show that a wild-type aerolysin nanopore can detect and discriminate diverse SG species through the modulable electro-osmotic flow effect at varied applied voltages. At low voltages, the neutral SG molecule was drawn and stuck in the pore entrance due to an energy barrier around R220 sites. The ensuing binding events enable the identification of the majority of SG species. Increasing the voltage can break the barrier and cause translocation events, allowing for the unambiguous identification of several pairs of SGs differing by only one hydroxyl group through recognition accumulation from multiple sensing regions and sites. Based on nanopore data of 15 SGs, a deep learning-based artificial intelligence (AI) model was created to process the individual blockage events, achieving the rapid, automated, and precise single-molecule identification and quantification of SGs in real samples. This work highlights the value of nanopore sensing for precise structural analysis of complex glycans-containing glycosides, as well as the potential for sensitive and rapid quality assurance analysis of glycoside products with the use of AI.
甜菊糖苷(SGs)是一类高甜度、无热量的天然甜味剂,由一个共同的二萜核心和不同的糖基组成。因此,糖基在组成、键合和异构方面的多样性导致 SG 家族具有巨大的结构复杂性,这给精确鉴定带来了挑战,并导致 SG 经常以混合物的形式使用,其生物活性的差异在很大程度上仍未得到探索。在这里,我们展示野生型 Aerolysin 纳米孔可以通过在不同施加电压下的可调电动渗透流效应来检测和区分不同的 SG 物种。在低电压下,由于 R220 位点周围的能量障碍,中性 SG 分子被拉进并卡在孔口。随后的结合事件使大多数 SG 物种得以识别。增加电压可以打破障碍并引起转位事件,从而通过来自多个传感区域和位点的识别累积,明确识别只有一个羟基差异的几对 SG。基于 15 种 SG 的纳米孔数据,创建了一个基于深度学习的人工智能(AI)模型来处理单个阻断事件,实现了对真实样品中 SG 的快速、自动和精确的单分子识别和定量。这项工作突出了纳米孔传感在复杂含聚糖苷精确结构分析中的价值,以及人工智能在糖苷产品灵敏快速质量保证分析中的潜力。