Suppr超能文献

基于血管内超声的深度学习在冠状动脉疾病中的斑块特征分析。

Intravascular ultrasound-based deep learning for plaque characterization in coronary artery disease.

机构信息

Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.

Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea.

出版信息

Atherosclerosis. 2021 May;324:69-75. doi: 10.1016/j.atherosclerosis.2021.03.037. Epub 2021 Mar 29.

Abstract

BACKGROUND AND AIMS

Although plaque characterization by intravascular ultrasound (IVUS) is important for risk stratification, frame-by-frame analysis of a whole vascular segment is time-consuming. The aim was to develop IVUS-based algorithms for classifying attenuation and calcified plaques.

METHODS

IVUS image sets of 598 coronary arteries from 598 patients were randomized into training and test sets with 5:1 ratio. Each IVUS frame at a 0.4-mm interval was circumferentially labeled as one of three classes: attenuated plaque, calcified plaque, or plaque without attenuation or calcification. The model was trained on multi-class classification with 5-fold cross validation. By converting from Cartesian to polar coordinate images, the class corresponding to each array from 0 to 360° was plotted.

RESULTS

At the angle-level, Dice similarity coefficients for identifying calcification vs. attenuation vs. none by using ensemble model were 0.79, 0.74 and 0.99, respectively. Also, the maximal accuracy was 98% to classify those groups in the test set. At the frame-level, the model identified the presence of attenuation with 80% sensitivity, 96% specificity, and 93% overall accuracy, and the presence of calcium with 86% sensitivity, 97% specificity, and 96% overall accuracy. In the per-vessel analysis, the attenuation and calcification burden index closely correlated with human measurements (r = 0.89 and r = 0.95, respectively), as did the maximal attenuation and calcification burden index over 4 mm (r = 0.82 and r = 0.91, respectively). The inference times were 0.05 s per frame and 7.8 s per vessel.

CONCLUSIONS

Our deep learning algorithms for plaque characterization may assist clinicians in recognizing high-risk coronary lesions.

摘要

背景与目的

虽然血管内超声(IVUS)对斑块特征进行评估对风险分层很重要,但对整个血管节段逐帧分析耗时。目的是开发基于 IVUS 的算法来对衰减斑块和钙化斑块进行分类。

方法

将 598 名患者的 598 支冠状动脉的 IVUS 图像集随机分为训练集和测试集,比例为 5:1。以 0.4mm 的间隔对每个 IVUS 帧进行周向标记,分为衰减斑块、钙化斑块或无衰减或无钙化斑块三类。使用 5 折交叉验证进行多类分类训练。通过将笛卡尔坐标图像转换为极坐标图像,绘制每个数组 0 到 360°的对应类别。

结果

在角度水平上,使用集成模型识别钙化与衰减与无钙化的 Dice 相似系数分别为 0.79、0.74 和 0.99。此外,在测试集中,最大准确率为 98%,可对这些组进行分类。在帧水平上,该模型对衰减的存在的识别具有 80%的敏感性、96%的特异性和 93%的总准确率,对钙的存在的识别具有 86%的敏感性、97%的特异性和 96%的总准确率。在血管水平分析中,衰减和钙化负担指数与人体测量值密切相关(r=0.89 和 r=0.95),最大衰减和钙化负担指数超过 4mm 时也具有相关性(r=0.82 和 r=0.91)。推断时间为每帧 0.05 秒,每支血管 7.8 秒。

结论

我们的斑块特征深度学习算法可以帮助临床医生识别高风险的冠状动脉病变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验