Suppr超能文献

耦合复杂SYK模型的热力学与动力学

Thermodynamics and dynamics of coupled complex SYK models.

作者信息

Louw Jan C, van Manen Linda M, Jha Rishabh

机构信息

Institute for Theoretical Physics, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.

Friedrich-Schiller-Universität, Institute for Theoretical Physics, Max-Wien-Platz 1, 07743 Jena, Germany.

出版信息

J Phys Condens Matter. 2024 Sep 6;36(49). doi: 10.1088/1361-648X/ad743a.

Abstract

It has been known that the large-complex Sachdev-Ye-Kitaev (SYK) model falls under the same universality class as that of van der Waals (mean-field) and saturates the Maldacena-Shenker-Stanford (MSS) bound, both features shared by various black holes. This makes the SYK model a useful tool in probing the fundamental nature of quantum chaos and holographic duality. This work establishes the robustness of this shared universality class and chaotic properties for SYK-like models by extending to a system of coupled large-complex SYK models of different orders. We provide a detailed derivation of thermodynamic properties, specifically the critical exponents for an observed phase transition, as well as dynamical properties, in particular the Lyapunov exponent, via the out-of-time correlator calculations. Our analysis reveals that, despite the introduction of an additional scaling parameter through interaction strength ratios, the system undergoes a continuous phase transition at low temperatures, similar to that of the single SYK model. The critical exponents align with the Landau-Ginzburg (mean-field) universality class, shared with van der Waals gases and various AdS black holes. Furthermore, we demonstrate that the coupled SYK system remains maximally chaotic in the large-limit at low temperatures, adhering to the MSS bound, a feature consistent with the single SYK model. These findings establish robustness and open avenues for broader inquiries into the universality and chaos in complex quantum systems. We provide a detailed outlook for future work by considering the 'very' low-temperature regime, where we discuss relations with the Hawking-Page phase transition observed in the holographic dual black holes. We present preliminary calculations and discuss the possible follow-ups that might be taken to make the connection robust.

摘要

已知大复杂度的萨赫德夫 - 叶 - 基塔耶夫(SYK)模型与范德瓦尔斯(平均场)模型属于同一普适类,并且饱和了马尔达西那 - 申克 - 斯坦福(MSS)界,这两个特征为各种黑洞所共有。这使得SYK模型成为探索量子混沌和全息对偶基本性质的有用工具。这项工作通过扩展到不同阶的耦合大复杂度SYK模型系统,确立了这种共享普适类和类SYK模型混沌性质的稳健性。我们通过非时间关联函数计算,详细推导了热力学性质,特别是观测到的相变的临界指数,以及动力学性质,尤其是李雅普诺夫指数。我们的分析表明,尽管通过相互作用强度比引入了一个额外的标度参数,但该系统在低温下仍经历连续相变,类似于单个SYK模型。临界指数与朗道 - 金兹堡(平均场)普适类一致,与范德瓦尔斯气体和各种反德西特黑洞共享。此外,我们证明耦合SYK系统在低温大极限下仍保持最大混沌,遵循MSS界,这一特征与单个SYK模型一致。这些发现确立了稳健性,并为更广泛地探究复杂量子系统中的普适性和混沌开辟了道路。我们通过考虑“极”低温区域,为未来工作提供了详细展望,在该区域我们讨论了与全息对偶黑洞中观测到的霍金 - 佩奇相变的关系。我们给出了初步计算结果,并讨论了为使这种联系更稳健可能采取的后续措施。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验