Institute for Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Marburg, Germany.
Marburg Center of Mind, Brain and Behavior-CMBB, Marburg, Germany.
Cell Death Dis. 2024 Aug 27;15(8):626. doi: 10.1038/s41419-024-07015-8.
Mitochondria are highly dynamic organelles which undergo constant fusion and fission as part of the mitochondrial quality control. In genetic diseases and age-related neurodegenerative disorders, altered mitochondrial fission-fusion dynamics have been linked to impaired mitochondrial quality control, disrupted organelle integrity and function, thereby promoting neural dysfunction and death. The key enzyme regulating mitochondrial fission is the GTPase Dynamin-related Protein 1 (Drp1), which is also considered as a key player in mitochondrial pathways of regulated cell death. In particular, increasing evidence suggests a role for impaired mitochondrial dynamics and integrity in ferroptosis, which is an iron-dependent oxidative cell death pathway with relevance in neurodegeneration. In this study, we demonstrate that CRISPR/Cas9-mediated genetic depletion of Drp1 exerted protective effects against oxidative cell death by ferroptosis through preserved mitochondrial integrity and maintained redox homeostasis. Knockout of Drp1 resulted in mitochondrial elongation, attenuated ferroptosis-mediated impairment of mitochondrial membrane potential, and stabilized iron trafficking and intracellular iron storage. In addition, Drp1 deficiency exerted metabolic effects, with reduced basal and maximal mitochondrial respiration and a metabolic shift towards glycolysis. These metabolic effects further alleviated the mitochondrial contribution to detrimental ROS production thereby significantly enhancing neural cell resilience against ferroptosis. Taken together, this study highlights the key role of Drp1 in mitochondrial pathways of ferroptosis and expose the regulator of mitochondrial dynamics as a potential therapeutic target in neurological diseases involving oxidative dysregulation.
线粒体是高度动态的细胞器,作为线粒体质量控制的一部分,它们不断经历融合和裂变。在遗传疾病和与年龄相关的神经退行性疾病中,改变的线粒体分裂-融合动力学与受损的线粒体质量控制、细胞器完整性和功能的破坏有关,从而促进神经功能障碍和死亡。调节线粒体分裂的关键酶是 GTPase 相关蛋白 1(Drp1),它也被认为是细胞程序性死亡的线粒体途径中的关键参与者。特别是,越来越多的证据表明,线粒体动力学和完整性的受损在铁死亡中起作用,铁死亡是一种依赖铁的氧化细胞死亡途径,与神经退行性变有关。在这项研究中,我们证明了 CRISPR/Cas9 介导的 Drp1 基因缺失通过保持线粒体完整性和维持氧化还原平衡,对铁死亡引起的氧化细胞死亡具有保护作用。Drp1 的敲除导致线粒体伸长,减弱了铁死亡介导的线粒体膜电位损伤,并稳定了铁转运和细胞内铁储存。此外,Drp1 缺失产生代谢效应,基础和最大线粒体呼吸减少,代谢向糖酵解转变。这些代谢效应进一步减轻了线粒体对有害 ROS 产生的贡献,从而显著增强了神经细胞对铁死亡的抵抗力。总之,这项研究强调了 Drp1 在铁死亡的线粒体途径中的关键作用,并揭示了调节线粒体动力学作为涉及氧化失调的神经疾病的潜在治疗靶点的重要性。
Int J Biol Sci. 2023
Cell Signal. 2018-4-17
MedComm (2020). 2025-7-23
Nat Rev Neurosci. 2025-5-19
Antioxidants (Basel). 2023-8-9
Int J Biol Sci. 2023
Cell Mol Life Sci. 2023-6-2
Physiol Rev. 2023-10-1
Cells. 2023-2-13
Front Mol Biosci. 2022-8-26
Cell Death Dis. 2021-10-16