Suppr超能文献

将 catboost 算法与三角剖分特征重要性相结合,预测复发性宫颈癌的生存结局。

Integrating cat boost algorithm with triangulating feature importance to predict survival outcome in recurrent cervical cancer.

机构信息

Department of Information Technology, M. Kumarasamy College of Engineering, Thalavapalayam, Karur, Tamil Nadu, India.

Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.

出版信息

Sci Rep. 2024 Aug 27;14(1):19828. doi: 10.1038/s41598-024-67562-0.

Abstract

Cervical cancer is one of the most dangerous malignancies in women. Prolonged survival times are made possible by breakthroughs in early recognition and efficient treatment of a disease.The existing methods are lagging on finding the important attributes to predict the survival outcome. The main objective of this study is to find individuals with cervical cancer who are at greater risk of death from recurrence by predicting the survival.A novel approach in a proposed technique is Triangulating feature importance to find the important risk factors through which the treatment may vary to improve the survival outcome.Five algorithms Support vector machine, Naive Bayes, supervised logistic regression, decision tree algorithm, Gradient boosting, and random forest are used to build the concept. Conventional attribute selection methods like information gain (IG), FCBF, and ReliefFare employed. The recommended classifier is evaluated for Precision, Recall, F1, Mathews Correlation Coefficient (MCC), Classification Accuracy (CA), and Area under curve (AUC) using various methods. Gradient boosting algorithm (CAT BOOST) attains the highest accuracy value of 0.99 to predict survival outcome of recurrence cervical cancer patients. The proposed outcome of the research is to identify the important risk factors through which the survival outcome of the patients improved.

摘要

宫颈癌是女性最危险的恶性肿瘤之一。通过早期发现和有效治疗疾病,突破了长期生存的可能。现有的方法在寻找重要的属性来预测生存结果方面落后了。本研究的主要目的是通过预测生存来寻找宫颈癌患者中因复发而死亡风险更高的个体。拟议技术中的一种新方法是通过三角测量特征重要性来发现重要的风险因素,通过这些因素,治疗方法可能会有所不同,以提高生存结果。使用了五种算法:支持向量机、朴素贝叶斯、有监督逻辑回归、决策树算法、梯度提升和随机森林来构建概念。使用了传统的属性选择方法,如信息增益(IG)、FCBF 和 ReliefF。使用各种方法评估推荐的分类器的精度、召回率、F1、马修斯相关系数(MCC)、分类准确率(CA)和曲线下面积(AUC)。梯度提升算法(CAT BOOST)获得了 0.99 的最高准确率,用于预测复发宫颈癌患者的生存结果。研究的预期结果是确定重要的风险因素,通过这些因素可以改善患者的生存结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6369/11349876/06c49e0bdbfc/41598_2024_67562_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验