Suppr超能文献

基于机器学习的宫颈癌生存预后预测。

Machine learning-based prediction of survival prognosis in cervical cancer.

机构信息

Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China.

Department of Gynecologic Oncology, School of Medicine, Chongqing University Cancer Hospital, , Chongqing University, Chongqing, 400030, People's Republic of China.

出版信息

BMC Bioinformatics. 2021 Jun 16;22(1):331. doi: 10.1186/s12859-021-04261-x.

Abstract

BACKGROUND

Accurately forecasting the prognosis could improve cervical cancer management, however, the currently used clinical features are difficult to provide enough information. The aim of this study is to improve forecasting capability by developing a miRNAs-based machine learning survival prediction model.

RESULTS

The expression characteristics of miRNAs were chosen as features for model development. The cervical cancer miRNA expression data was obtained from The Cancer Genome Atlas database. Preprocessing, including unquantified data removal, missing value imputation, samples normalization, log transformation, and feature scaling, was performed. In total, 42 survival-related miRNAs were identified by Cox Proportional-Hazards analysis. The patients were optimally clustered into four groups with three different 5-years survival outcome (≥ 90%, ≈ 65%, ≤ 40%) by K-means clustering algorithm base on top 10 survival-related miRNAs. According to the K-means clustering result, a prediction model with high performance was established. The pathways analysis indicated that the miRNAs used play roles involved in the regulation of cancer stem cells.

CONCLUSION

A miRNAs-based machine learning cervical cancer survival prediction model was developed that robustly stratifies cervical cancer patients into high survival rate (5-years survival rate ≥ 90%), moderate survival rate (5-years survival rate ≈ 65%), and low survival rate (5-years survival rate ≤ 40%).

摘要

背景

准确预测预后可以改善宫颈癌的管理,然而,目前使用的临床特征很难提供足够的信息。本研究旨在通过开发基于 miRNAs 的机器学习生存预测模型来提高预测能力。

结果

选择 miRNA 的表达特征作为模型开发的特征。从癌症基因组图谱数据库中获取宫颈癌 miRNA 表达数据。进行了预处理,包括去除未量化数据、缺失值插补、样本归一化、对数转换和特征缩放。通过 Cox 比例风险分析确定了 42 个与生存相关的 miRNA。通过 K-means 聚类算法,根据前 10 个与生存相关的 miRNA,将患者最佳聚类为四个具有三种不同 5 年生存结局(≥90%、≈65%、≤40%)的组。根据 K-means 聚类结果,建立了一个具有高性能的预测模型。通路分析表明,所使用的 miRNAs 参与了癌症干细胞的调控。

结论

开发了一种基于 miRNAs 的机器学习宫颈癌生存预测模型,可将宫颈癌患者分为高生存率(5 年生存率≥90%)、中生存率(5 年生存率≈65%)和低生存率(5 年生存率≤40%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb7/8207793/f142d19c33c7/12859_2021_4261_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验