Suppr超能文献

持久同调计算路线图。

A roadmap for the computation of persistent homology.

作者信息

Otter Nina, Porter Mason A, Tillmann Ulrike, Grindrod Peter, Harrington Heather A

机构信息

1Mathematical Institute, University of Oxford, Oxford, OX2 6GG UK.

The Alan Turing Institute, 96 Euston Road, London, NW1 2DB UK.

出版信息

EPJ Data Sci. 2017;6(1):17. doi: 10.1140/epjds/s13688-017-0109-5. Epub 2017 Aug 9.

Abstract

UNLABELLED

(PH) is a method used in topological data analysis (TDA) to study qualitative features of data that persist across multiple scales. It is robust to perturbations of input data, independent of dimensions and coordinates, and provides a compact representation of the qualitative features of the input. The computation of PH is an open area with numerous important and fascinating challenges. The field of PH computation is evolving rapidly, and new algorithms and software implementations are being updated and released at a rapid pace. The purposes of our article are to (1) introduce theory and computational methods for PH to a broad range of computational scientists and (2) provide benchmarks of state-of-the-art implementations for the computation of PH. We give a friendly introduction to PH, navigate the pipeline for the computation of PH with an eye towards applications, and use a range of synthetic and real-world data sets to evaluate currently available open-source implementations for the computation of PH. Based on our benchmarking, we indicate which algorithms and implementations are best suited to different types of data sets. In an accompanying tutorial, we provide guidelines for the computation of PH. We make publicly available all scripts that we wrote for the tutorial, and we make available the processed version of the data sets used in the benchmarking.

ELECTRONIC SUPPLEMENTARY MATERIAL

The online version of this article (doi:10.1140/epjds/s13688-017-0109-5) contains supplementary material.

摘要

未标注

持久同调(PH)是拓扑数据分析(TDA)中用于研究跨多个尺度持续存在的数据定性特征的一种方法。它对输入数据的扰动具有鲁棒性,与维度和坐标无关,并提供输入定性特征的紧凑表示。PH的计算是一个有着众多重要且迷人挑战的开放领域。PH计算领域正在迅速发展,新的算法和软件实现正以快速的步伐更新和发布。我们文章的目的是:(1)向广泛的计算科学家介绍PH的理论和计算方法;(2)提供PH计算的当前最先进实现的基准测试。我们对PH进行友好介绍,着眼于应用来梳理PH的计算流程,并使用一系列合成和真实世界数据集来评估当前可用的用于PH计算的开源实现。基于我们的基准测试,我们指出哪些算法和实现最适合不同类型的数据集。在一篇配套教程中,我们提供了PH计算的指南。我们公开了为教程编写的所有脚本,并提供了基准测试中使用的数据集的处理版本。

电子补充材料

本文的在线版本(doi:10.1140/epjds/s13688 - 017 - 0109 - 5)包含补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c47a/6979512/6e3159776858/13688_2017_109_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验