Suppr超能文献

使用胸部 X 光分割和深度学习检测 COVID-19 严重程度。

COVID-19 severity detection using chest X-ray segmentation and deep learning.

机构信息

School of Information and Communication Engineering, Chungbuk National University, Cheongju, South Korea.

Department of Mathematics & Statistics, SHUATS, Prayagraj, Uttar Pradesh, India.

出版信息

Sci Rep. 2024 Aug 27;14(1):19846. doi: 10.1038/s41598-024-70801-z.

Abstract

COVID-19 has resulted in a significant global impact on health, the economy, education, and daily life. The disease can range from mild to severe, with individuals over 65 or those with underlying medical conditions being more susceptible to severe illness. Early testing and isolation are vital due to the virus's variable incubation period. Chest radiographs (CXR) have gained importance as a diagnostic tool due to their efficiency and reduced radiation exposure compared to CT scans. However, the sensitivity of CXR in detecting COVID-19 may be lower. This paper introduces a deep learning framework for accurate COVID-19 classification and severity prediction using CXR images. U-Net is used for lung segmentation, achieving a precision of 0.9924. Classification is performed using a Convulation-capsule network, with high true positive rates of 86% for COVID-19, 93% for pneumonia, and 85% for normal cases. Severity assessment employs ResNet50, VGG-16, and DenseNet201, with DenseNet201 showing superior accuracy. Empirical results, validated with 95% confidence intervals, confirm the framework's reliability and robustness. This integration of advanced deep learning techniques with radiological imaging enhances early detection and severity assessment, improving patient management and resource allocation in clinical settings.

摘要

新冠病毒疫情对全球健康、经济、教育和日常生活造成了重大影响。该疾病的严重程度不一,65 岁以上人群或有基础疾病的人群更容易出现重症。由于病毒潜伏期不定,早期检测和隔离至关重要。与 CT 扫描相比,胸部 X 光(CXR)具有效率高、辐射暴露少的优势,因此成为一种重要的诊断工具。但 CXR 检测新冠病毒的灵敏度可能较低。本文提出了一种使用 CXR 图像进行新冠病毒分类和严重程度预测的深度学习框架。U-Net 用于肺部分割,准确率达到 0.9924。使用卷积胶囊网络进行分类,新冠病毒的真阳性率为 86%,肺炎为 93%,正常情况为 85%。使用 ResNet50、VGG-16 和 DenseNet201 进行严重程度评估,其中 DenseNet201 的准确性最高。经验结果经 95%置信区间验证,证实了该框架的可靠性和稳健性。将先进的深度学习技术与放射影像学相结合,提高了早期检测和严重程度评估的能力,改善了临床环境中的患者管理和资源分配。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验