Suppr超能文献

全场光学相干显微镜能够实现活小鼠卵母细胞和早期胚胎的高分辨率无标记动态成像。

Full-field optical coherence microscopy enables high-resolution label-free imaging of the dynamics of live mouse oocytes and early embryos.

机构信息

Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Torun, Poland.

Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.

出版信息

Commun Biol. 2024 Aug 27;7(1):1057. doi: 10.1038/s42003-024-06745-x.

Abstract

High quality label-free imaging of oocytes and early embryos is essential for accurate assessment of their developmental potential, a key element of assisted reproduction procedures. To achieve this goal, we propose full-field optical coherence microscopy (FF-OCM), constructed as a compact module fully integrated with a commercial wide-field fluorescence microscope. Our system achieves optical sectioning in wide-field, high in-plane resolution of 0.5 µm, and high sensitivity to backscattered light. To demonstrate its imaging capabilities, we study live mouse oocytes and embryos at all important stages of meiotic maturation and early embryogenesis. Our system enables visualization of intracellular structures, which are not visible in common bright-field microscopy, i.e., internal structure of nuclear apparatus, cytoskeletal filaments, cellular cortex, cytoplasmic protrusions, or zona pellucida features. Additionally, we visualize and quantify intracellular dynamics like cytoplasmic stirring motion, nuclear envelope fluctuations and nucleolus mobility. Altogether, we demonstrate that FF-OCM is a powerful tool for research in developmental biology that also holds great potential for non-invasive time-lapse monitoring of oocyte and embryo quality in assisted reproduction.

摘要

高质量的无标记卵母细胞和早期胚胎成像对于准确评估其发育潜能至关重要,而这是辅助生殖程序的关键要素。为了实现这一目标,我们提出了全场光学相干显微镜(FF-OCM),它被构建为一个与商业宽场荧光显微镜完全集成的紧凑模块。我们的系统在宽场中实现光学切片,具有 0.5 µm 的高面内分辨率和对背向散射光的高灵敏度。为了展示其成像能力,我们研究了活的小鼠卵母细胞和胚胎在减数分裂成熟和早期胚胎发生的所有重要阶段。我们的系统能够可视化在普通明场显微镜下不可见的细胞内结构,例如核装置的内部结构、细胞骨架丝、细胞皮层、细胞质突起或透明带特征。此外,我们还可以可视化和量化细胞内动力学,如细胞质搅拌运动、核膜波动和核仁运动。总之,我们证明 FF-OCM 是发育生物学研究的有力工具,也非常有潜力用于辅助生殖中对卵母细胞和胚胎质量进行非侵入性的时程监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验