Suppr超能文献

利用光学相干显微镜在体研究小鼠植入前胚胎发育。

Staging mouse preimplantation development in vivo using optical coherence microscopy.

机构信息

Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas.

出版信息

J Biophotonics. 2019 May;12(5):e201800364. doi: 10.1002/jbio.201800364. Epub 2019 Jan 9.

Abstract

In mammals, preimplantation development primarily occurs in the oviduct (or fallopian tube) where fertilized oocytes migrate through, develop and divide as they prepare for implantation in the uterus. Studies of preimplantation development currently rely on ex vivo experiments with the embryos cultured outside of the oviduct, neglecting the native environment for embryonic growth. This prevents the understanding of the natural process of preimplantation development and the roles of the oviduct in early embryonic health. Here, we report an in vivo optical imaging approach enabling high-resolution visualizations of developing embryos in the mouse oviduct. By combining optical coherence microscopy (OCM) and a dorsal imaging window, the subcellular structures and morphologies of unfertilized oocytes, zygotes and preimplantation embryos can be well resolved in vivo, allowing for the staging of development. We present the results together with bright-field microscopy images to show the comparable imaging quality. As the mouse is a well-established model with a variety of genetic engineering strategies available, the in vivo imaging approach opens great opportunities to investigate how the oviduct and early embryos interact to prepare for successful implantation. This knowledge could have beneficial impact on understanding infertility and improving in vitro fertilization. OCM through a dorsal imaging window enables high-resolution imaging and staging of mouse preimplantation embryos in vivo in the oviduct.

摘要

在哺乳动物中,着床前胚胎发育主要发生在输卵管(或输卵管)中,受精卵在输卵管中迁移、发育和分裂,为着床到子宫做准备。目前,对着床前胚胎发育的研究主要依赖于在输卵管外培养胚胎的离体实验,而忽略了胚胎生长的自然环境。这阻碍了对着床前胚胎发育自然过程以及输卵管在早期胚胎健康中的作用的理解。在这里,我们报告了一种体内光学成像方法,能够在活体小鼠输卵管中对发育中的胚胎进行高分辨率可视化。通过结合光学相干显微镜(OCM)和背侧成像窗口,未受精卵、受精卵和着床前胚胎的亚细胞结构和形态可以在体内很好地分辨,从而可以对胚胎发育进行分期。我们展示了与明场显微镜图像相结合的结果,以显示可比的成像质量。由于小鼠是一种成熟的模型,具有多种基因工程策略,体内成像方法为研究输卵管和早期胚胎如何相互作用以准备成功着床提供了巨大的机会。这一知识可能对理解不孕不育和提高体外受精技术有有益的影响。通过背侧成像窗口的 OCM 能够在活体小鼠输卵管中对着床前胚胎进行高分辨率成像和分期。

相似文献

1
Staging mouse preimplantation development in vivo using optical coherence microscopy.
J Biophotonics. 2019 May;12(5):e201800364. doi: 10.1002/jbio.201800364. Epub 2019 Jan 9.
2
Prolonged in vivo functional assessment of the mouse oviduct using optical coherence tomography through a dorsal imaging window.
J Biophotonics. 2018 May;11(5):e201700316. doi: 10.1002/jbio.201700316. Epub 2018 Feb 8.
3
In vivo dynamic 3D imaging of oocytes and embryos in the mouse oviduct.
Cell Rep. 2021 Jul 13;36(2):109382. doi: 10.1016/j.celrep.2021.109382.
5
three-dimensional tracking of sperm behaviors in the mouse oviduct.
Development. 2018 Mar 19;145(6):dev157685. doi: 10.1242/dev.157685.

引用本文的文献

1
In vivo dynamic imaging reveals the oviduct as a leaky peristaltic pump in transporting a preimplantation embryo toward pregnancy.
Biomed Opt Express. 2025 Jul 15;16(8):3156-3171. doi: 10.1364/BOE.565065. eCollection 2025 Aug 1.
2
Novel imaging and biophysical approaches to study tissue hydraulics in mammalian folliculogenesis.
Biophys Rev. 2024 Oct 7;16(5):625-637. doi: 10.1007/s12551-024-01231-4. eCollection 2024 Oct.
4
In Vitro Culture of Mammalian Embryos: Is There Room for Improvement?
Cells. 2024 Jun 7;13(12):996. doi: 10.3390/cells13120996.
5
volumetric depth-resolved imaging of cilia metachronal waves using dynamic optical coherence tomography.
Optica. 2023 Nov 20;10(11):1439-1451. doi: 10.1364/optica.499927. Epub 2023 Nov 2.
7
Optical coherence tomography for dynamic investigation of mammalian reproductive processes.
Mol Reprod Dev. 2023 Jan;90(1):3-13. doi: 10.1002/mrd.23665. Epub 2022 Dec 27.
8
Dynamics of gametes and embryos in the oviduct: what can in vivo imaging reveal?
Reproduction. 2023 Jan 4;165(2):R25-R37. doi: 10.1530/REP-22-0250. Print 2023 Feb 1.
9
In vivo dynamic 3D imaging of oocytes and embryos in the mouse oviduct.
Cell Rep. 2021 Jul 13;36(2):109382. doi: 10.1016/j.celrep.2021.109382.
10
Label-free optical imaging in developmental biology [Invited].
Biomed Opt Express. 2020 Mar 13;11(4):2017-2040. doi: 10.1364/BOE.381359. eCollection 2020 Apr 1.

本文引用的文献

1
three-dimensional tracking of sperm behaviors in the mouse oviduct.
Development. 2018 Mar 19;145(6):dev157685. doi: 10.1242/dev.157685.
2
Prolonged in vivo functional assessment of the mouse oviduct using optical coherence tomography through a dorsal imaging window.
J Biophotonics. 2018 May;11(5):e201700316. doi: 10.1002/jbio.201700316. Epub 2018 Feb 8.
3
Gradient light interference microscopy for 3D imaging of unlabeled specimens.
Nat Commun. 2017 Aug 8;8(1):210. doi: 10.1038/s41467-017-00190-7.
4
Pixel-based speckle adjustment for noise reduction in Fourier-domain OCT images.
Biomed Opt Express. 2017 Feb 21;8(3):1721-1730. doi: 10.1364/BOE.8.001721. eCollection 2017 Mar 1.
5
Computational optical coherence tomography [Invited].
Biomed Opt Express. 2017 Feb 16;8(3):1549-1574. doi: 10.1364/BOE.8.001549. eCollection 2017 Mar 1.
7
Speckle-modulating optical coherence tomography in living mice and humans.
Nat Commun. 2017 Jun 20;8:15845. doi: 10.1038/ncomms15845.
9
Oviduct: roles in fertilization and early embryo development.
J Endocrinol. 2017 Jan;232(1):R1-R26. doi: 10.1530/JOE-16-0302.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验