Suppr超能文献

一种预测 ICU 住院肝硬化患者急性肾损伤早期发生的动态模型:MIMIC 数据库分析。

A dynamic model to predict early occurrence of acute kidney injury in ICU hospitalized cirrhotic patients: a MIMIC database analysis.

机构信息

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, 310003, China.

Department of Infectious Diseases, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.

出版信息

BMC Gastroenterol. 2024 Aug 27;24(1):290. doi: 10.1186/s12876-024-03369-7.

Abstract

BACKGROUND

This study aimed to develop a tool for predicting the early occurrence of acute kidney injury (AKI) in ICU hospitalized cirrhotic patients.

METHODS

Eligible patients with cirrhosis were identified from the Medical Information Mart for Intensive Care database. Demographic data, laboratory examinations, and interventions were obtained. After splitting the population into training and validation cohorts, the least absolute shrinkage and selection operator regression model was used to select factors and construct the dynamic online nomogram. Calibration and discrimination were used to assess nomogram performance, and clinical utility was evaluated by decision curve analysis (DCA).

RESULTS

A total of 1254 patients were included in the analysis, and 745 developed AKI. The mean arterial pressure, white blood cell count, total bilirubin level, Glasgow Coma Score, creatinine, heart rate, platelet count and albumin level were identified as predictors of AKI. The developed model had a good ability to differentiate AKI from non-AKI, with AUCs of 0.797 and 0.750 in the training and validation cohorts, respectively. Moreover, the nomogram model showed good calibration. DCA showed that the nomogram had a superior overall net benefit within wide and practical ranges of threshold probabilities.

CONCLUSIONS

The dynamic online nomogram can be an easy-to-use tool for predicting the early occurrence of AKI in critically ill patients with cirrhosis.

摘要

背景

本研究旨在开发一种工具,用于预测 ICU 住院肝硬化患者急性肾损伤(AKI)的早期发生。

方法

从医疗信息集市重症监护数据库中确定符合条件的肝硬化患者。获取人口统计学数据、实验室检查和干预措施。将人群分为训练和验证队列后,使用最小绝对收缩和选择算子回归模型选择因素并构建动态在线列线图。使用校准和判别来评估列线图的性能,并通过决策曲线分析(DCA)评估临床实用性。

结果

共分析了 1254 名患者,其中 745 名患者发生 AKI。平均动脉压、白细胞计数、总胆红素水平、格拉斯哥昏迷评分、肌酐、心率、血小板计数和白蛋白水平被确定为 AKI 的预测因素。所开发的模型具有良好的区分 AKI 和非 AKI 的能力,在训练和验证队列中的 AUC 分别为 0.797 和 0.750。此外,列线图模型显示出良好的校准度。DCA 表明,在广泛和实用的阈值概率范围内,该列线图具有优越的总体净效益。

结论

动态在线列线图可以成为一种易于使用的工具,用于预测 ICU 肝硬化患者 AKI 的早期发生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/060a/11351080/82b084b282f8/12876_2024_3369_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验