Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany.
Clin Epigenetics. 2024 Aug 27;16(1):119. doi: 10.1186/s13148-024-01719-6.
Cardiac fibrosis is the hallmark of all forms of chronic heart disease. Activation and proliferation of cardiac fibroblasts are the prime mediators of cardiac fibrosis. Existing studies show that ROS and inflammatory cytokines produced during fibrosis not only signal proliferative stimuli but also contribute to DNA damage. Therefore, as a prerequisite to maintain sustained proliferation in fibroblasts, activation of distinct DNA repair mechanism is essential.
In this study, we report that TET3, a DNA demethylating enzyme, which has been shown to be reduced in cardiac fibrosis and to exert antifibrotic effects does so not only through its demethylating activity but also through maintaining genomic integrity by facilitating error-free homologous recombination (HR) repair of DNA damage. Using both in vitro and in vivo models of cardiac fibrosis as well as data from human heart tissue, we demonstrate that the loss of TET3 in cardiac fibroblasts leads to spontaneous DNA damage and in the presence of TGF-β to a shift from HR to the fast but more error-prone non-homologous end joining repair pathway. This shift contributes to increased fibroblast proliferation in a fibrotic environment. In vitro experiments showed TET3's recruitment to H2O2-induced DNA double-strand breaks (DSBs) in mouse cardiac fibroblasts, promoting HR repair. Overexpressing TET3 counteracted TGF-β-induced fibroblast proliferation and restored HR repair efficiency. Extending these findings to human cardiac fibrosis, we confirmed TET3 expression loss in fibrotic hearts and identified a negative correlation between TET3 levels, fibrosis markers, and DNA repair pathway alteration.
Collectively, our findings demonstrate TET3's pivotal role in modulating DDR and fibroblast proliferation in cardiac fibrosis and further highlight TET3 as a potential therapeutic target.
心肌纤维化是所有慢性心脏病的标志。心肌成纤维细胞的激活和增殖是心肌纤维化的主要介导者。现有研究表明,纤维化过程中产生的 ROS 和炎性细胞因子不仅传递有丝分裂刺激信号,而且还导致 DNA 损伤。因此,作为维持成纤维细胞持续增殖的前提条件,激活不同的 DNA 修复机制是必不可少的。
本研究报告称,TET3 是一种 DNA 去甲基化酶,它在心肌纤维化中减少,并通过其去甲基化活性以及通过促进无差错同源重组(HR)修复 DNA 损伤来维持基因组完整性来发挥抗纤维化作用。使用心肌纤维化的体外和体内模型以及来自人类心脏组织的数据,我们证明了心肌成纤维细胞中 TET3 的缺失会导致自发的 DNA 损伤,并且在 TGF-β存在的情况下,会从 HR 转变为更快但更易错的非同源末端连接修复途径。这种转变导致纤维化环境中成纤维细胞增殖增加。体外实验表明 TET3 募集到小鼠心肌成纤维细胞中 H2O2 诱导的 DNA 双链断裂(DSBs),促进 HR 修复。过表达 TET3 可对抗 TGF-β诱导的成纤维细胞增殖并恢复 HR 修复效率。将这些发现扩展到人类心肌纤维化,我们证实了纤维化心脏中 TET3 的表达缺失,并确定了 TET3 水平、纤维化标志物和 DNA 修复途径改变之间的负相关。
总之,我们的研究结果表明 TET3 在调节 DDR 和心肌纤维化中的成纤维细胞增殖中起着关键作用,并进一步强调了 TET3 作为潜在治疗靶点的重要性。