Suppr超能文献

他昔替尼治疗类风湿关节炎患者严重感染的机器学习预测和解释模型。

Machine learning prediction and explanatory models of serious infections in patients with rheumatoid arthritis treated with tofacitinib.

机构信息

Copenhagen Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine Diseases, Centre of Head and Orthopaedics, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.

Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

出版信息

Arthritis Res Ther. 2024 Aug 27;26(1):153. doi: 10.1186/s13075-024-03376-9.

Abstract

BACKGROUND

Patients with rheumatoid arthritis (RA) have an increased risk of developing serious infections (SIs) vs. individuals without RA; efforts to predict SIs in this patient group are ongoing. We assessed the ability of different machine learning modeling approaches to predict SIs using baseline data from the tofacitinib RA clinical trials program.

METHODS

This analysis included data from 19 clinical trials (phase 2, n = 10; phase 3, n = 6; phase 3b/4, n = 3). Patients with RA receiving tofacitinib 5 or 10 mg twice daily (BID) were included in the analysis; patients receiving tofacitinib 11 mg once daily were considered as tofacitinib 5 mg BID. All available patient-level baseline variables were extracted. Statistical and machine learning methods (logistic regression, support vector machines with linear kernel, random forest, extreme gradient boosting trees, and boosted trees) were implemented to assess the association of baseline variables with SI (logistic regression only), and to predict SI using selected baseline variables using 5-fold cross-validation. Missing values were handled individually per prediction model.

RESULTS

A total of 8404 patients with RA treated with tofacitinib were eligible for inclusion (15,310 patient-years of total follow-up) of which 473 patients reported SIs. Amongst other baseline factors, age, previous infection, and corticosteroid use were significantly associated with SI. When applying prediction modeling for SI across data from all studies, the area under the receiver operating characteristic (AUROC) curve ranged from 0.656 to 0.739. AUROC values ranged from 0.599 to 0.730 in data from phase 3 and 3b/4 studies, and from 0.563 to 0.643 in data from ORAL Surveillance only.

CONCLUSIONS

Baseline factors associated with SIs in the tofacitinib RA clinical trial program were similar to established SI risk factors associated with advanced treatments for RA. Furthermore, while model performance in predicting SI was similar to other published models, this did not meet the threshold for accurate prediction (AUROC > 0.85). Thus, predicting the occurrence of SIs at baseline remains challenging and may be complicated by the changing disease course of RA over time. Inclusion of other patient-associated and healthcare delivery-related factors and harmonization of the duration of studies included in the models may be required to improve prediction.

TRIAL REGISTRATION

ClinicalTrials.gov: NCT00147498; NCT00413660; NCT00550446; NCT00603512; NCT00687193; NCT01164579; NCT00976599; NCT01059864; NCT01359150; NCT02147587; NCT00960440; NCT00847613; NCT00814307; NCT00856544; NCT00853385; NCT01039688; NCT02187055; NCT02831855; NCT02092467.

摘要

背景

类风湿关节炎(RA)患者发生严重感染(SI)的风险高于无 RA 患者;目前正在努力预测该患者群体中的 SI。我们评估了不同机器学习建模方法使用托法替布 RA 临床试验项目的基线数据预测 SI 的能力。

方法

本分析包括来自 19 项临床试验的数据(2 期,n=10;3 期,n=6;3b/4 期,n=3)。纳入接受托法替布 5 或 10mg 每日 2 次(BID)治疗的 RA 患者;接受托法替布 11mg 每日 1 次的患者被视为托法替布 5mg BID。提取所有可用的患者基线变量。实施统计和机器学习方法(逻辑回归、具有线性核的支持向量机、随机森林、极端梯度提升树和提升树)来评估基线变量与 SI 的关联(仅逻辑回归),并使用 5 折交叉验证使用选定的基线变量预测 SI。每个预测模型单独处理缺失值。

结果

共有 8404 名接受托法替布治疗的 RA 患者符合纳入条件(总随访时间为 15310 患者年),其中 473 名患者报告发生了 SI。在其他基线因素中,年龄、既往感染和皮质类固醇的使用与 SI 显著相关。当在所有研究的数据中应用 SI 的预测建模时,接收者操作特征(ROC)曲线下面积(AUROC)范围为 0.656 至 0.739。来自 3 期和 3b/4 期研究的数据中 AUROC 值范围为 0.599 至 0.730,来自仅 ORAL Surveillance 的数据中 AUROC 值范围为 0.563 至 0.643。

结论

与用于治疗 RA 的先进疗法相关的既定 SI 风险因素相似,托法替布 RA 临床试验项目中与 SIs 相关的基线因素。此外,尽管预测 SI 的模型性能与其他已发表的模型相似,但未达到准确预测的阈值(AUROC>0.85)。因此,在基线预测 SIs 仍然具有挑战性,并且可能因 RA 随时间的疾病进程变化而变得复杂。可能需要纳入其他与患者相关和与医疗保健提供相关的因素,并对纳入模型的研究持续时间进行协调,以提高预测能力。

试验注册

ClinicalTrials.gov:NCT00147498;NCT00413660;NCT00550446;NCT00603512;NCT00687193;NCT01164579;NCT00976599;NCT01059864;NCT01359150;NCT02147587;NCT00960440;NCT00847613;NCT00814307;NCT00856544;NCT00853385;NCT01039688;NCT02187055;NCT02831855;NCT02092467。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b335/11348567/f94b5c4a26ab/13075_2024_3376_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验