Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06511, United States.
Institute of Biomolecular Design & Discovery, Yale University, New Haven, Connecticut 06511, United States.
ACS Chem Biol. 2024 Sep 20;19(9):2081-2086. doi: 10.1021/acschembio.4c00538. Epub 2024 Aug 28.
We report the development of Tether-seq, a transcriptome-wide screen to probe RNA-small molecule interactions using disulfide tethering. This technique uses sU metabolic labeling to provide sites for reversible and covalent attachment of small molecule disulfides to the transcriptome. By screening under reducing conditions, we identify interactions that are stabilized by binding over those driven by the reactivity of the RNA sites. When applied to cellular RNA, Tether-seq with a disulfide analogue of risdiplam, an FDA-approved drug that targets RNA to treat spinal muscular atrophy (SMA), revealed a number of potential binding sites, most prominently at a site within the cytochrome C oxidase 1 () transcript. Structure probing by SHAPE-MaP revealed a structured motif and confirmed binding to the lead molecule. This work demonstrates that these screens have the power to identify binding sites throughout the transcriptome and provide invaluable insight into the thermodynamic properties that define small molecule binding.
我们报告了 Tether-seq 的开发,这是一种使用二硫键连接进行 RNA-小分子相互作用的全转录组筛选技术。该技术使用 sU 代谢标记为小分子二硫键与转录组的可逆和共价连接提供位点。通过在还原条件下筛选,我们鉴定出那些通过结合稳定的相互作用,而不是通过 RNA 位点的反应性驱动的相互作用。当应用于细胞 RNA 时,Tether-seq 与 risdiplam 的二硫代类似物结合,risdiplam 是一种靶向 RNA 治疗脊髓性肌萎缩症 (SMA) 的 FDA 批准药物,揭示了许多潜在的结合位点,最突出的是细胞色素 C 氧化酶 1() 转录本中的一个位点。通过 SHAPE-MaP 进行结构探测显示出一个结构基序,并证实与先导分子结合。这项工作表明,这些筛选具有在整个转录组中识别结合位点的能力,并为定义小分子结合的热力学性质提供了宝贵的见解。